

Red Team Village: WebSploits Labs by Omar Santos

Introduction 4
What is WebSploit Labs? 4

Beginner to Intermediate Level 4
Intermediate to Advanced Level 4
Additional Resources: 5
Docker Containers 5

What Ports are Used by Each Web Application? 8

Exercise 1: Web Application Reconnaissance 9
Exercise 1a: Recon with gobuster 9
Exercise 1b: Recon with ffuf 13
Exercise 1c: Save the Results and Use the Replay-Proxy Option 13

Exercise 2: Authentication and Session Management Vulnerabilities 14
Exercise 2a: Fingerprinting the Web Framework and Programming Language used in the
Backend 15
Notes About the Burp CA Certificate 20
Intercepting requests and responses 20
Using the Proxy history 21
Burp Proxy testing workflow 21
Exercise 2b: Brute Forcing the Application 22
Exercise 2c: Bypassing Authorization 28
Exercise 2d: Discover the Score-Board 32

Exercise 3: Reflected XSS 34
Exercise 3a: Evasions 35
Exercise 3b: Reflected XSS 35
Exercise 3c: DOM-based XSS 37

Exercise 4: Stored (persistent) XSS 38
Exercise 4b: Let’s spice things up a bit! 40

Exercise 5: Exploiting XXE Vulnerabilities 44

Exercise 6: SQL Injection 48
A Brief Introduction to SQL 48

Exercise 6a: A Simple Example of SQL Injection 49
Exercise 6b: SQL Injection Level 2 - GDPR Data Erasure Issue 52
Exercise 6c: SQL Injection using SQLmap 53

Exercise 7: Exploiting Weak Cryptographic Implementations 57

Omar Ωr Santos (@santosomar) 2

Red Team Village: WebSploits Labs by Omar Santos

Exercise 8: Path (Directory) Traversal 60

Exercise 9: Command Injection 62

Exercise 10: Bypassing Additional Web Application Flaws 66

Exercise 11: Additional SQL Injection Exercises 66
Exercise 11.1: Logging in as Admin 66
Exercise 11.2 Login as Bender 68

Exercise 12: DC30_01 and DC30_02 69

Omar Ωr Santos (@santosomar) 3

Red Team Village: WebSploits Labs by Omar Santos

Introduction
This station can help people that are just getting started with cybersecurity, ethical hacking, and bug
hunting, or someone that already is experienced and wants to enhance their cybersecurity career.

What is WebSploit Labs?
WebSploit Labs is a learning environment created by Omar Santos for different Cybersecurity Ethical
Hacking (Web Penetration Testing) training sessions. WebSploit includes several intentionally
vulnerable applications running in Docker containers on top of Kali Linux or Parrot Security OS,
several additional tools, and over 9,000 cybersecurity resources. WebSploit comes with over 450
distinct exercises!

⚠️These containers contain vulnerable software (not malware). The containers are running in
Docker bridge interfaces and not exposed to the rest of the network.

Select your skill level:

Beginner to Intermediate Level
If you are getting started or perhaps preparing for a certification, complete this lab guide. This lab
guide walks you through only a few labs that are available in WebSploit Labs. As previously
mentioned, WebSploit Labs includes tons of intentionally vulnerable applications that have more than
450 exercises. We will only start by scratching the surface here. In this station you will immediately
start exploring the mapping and discovery phase of testing (recon of a web application). You will learn
new methodologies used and adopted by many penetration testers and ethical hackers. This is a
hands-on and self-guided mini-workshop where you will use various open source tools and learn how
to exploit SQL injection, command injection, cross-site scripting (XSS), XML External Entities (XXE),
authorization bypass, cross-site request forgery (CSRF), Server-side request forgery (SSRF) and
other web application vulnerabilities.

Intermediate to Advanced Level
If you are already an experienced hacker, feel free to skip the first few exercises and interact with two
CTF-like (not guided) exercises (described in Exercise 12). Your mission (if you choose to accept it) is
to find and exploit the vulnerabilities in the applications running in the following containers:

● DC30_01: 10.6.6.24
● DC30_02: 10.6.6.25

Omar Ωr Santos (@santosomar) 4

https://websploit.org
https://omarsantos.io/
https://www.kali.org/
https://www.parrotsec.org/

Red Team Village: WebSploits Labs by Omar Santos

Additional Resources:
● The Art of Hacking Website (https://theartofhacking.org): The Art of Hacking is a series of

video courses and live training sessions in O’Reilly that is a complete guide to help you get
started in a cybersecurity career. These video courses provide step-by-step real-life scenarios.
This website has been created to provide supplemental material to reinforce some of the
critical concepts and techniques that the student has learned and links a GitHub repository
that hosts scripts and code that help you build your own hacking environment, examples of
real-life penetration testing reports, and more.

● The H4cker GitHub Repository (https://becomingahacker.org/github): Over 10,000
references and resources related to ethical hacking / penetration testing, bug bounties, digital
forensics and incident response (DFIR), threat hunting, vulnerability research, exploit
development, reverse engineering, and more.

Docker Containers
All of the vulnerable servers are running in Docker containers and they should all start . If the Docker
service is not started at boot time, please use the following command to start it:

service docker start

The following are all the Docker containers included in the WebSploit VM:

Omar Ωr Santos (@santosomar) 5

https://theartofhacking.org
https://github.com/The-Art-of-Hacking/art-of-hacking
https://becomingahacker.org/github

Red Team Village: WebSploits Labs by Omar Santos

WebSploit VM Details

Omar Ωr Santos (@santosomar) 6

Red Team Village: WebSploits Labs by Omar Santos

To obtain the status of each docker container you can use the sudo docker ps command.

You can also use the containers script from the command line, as demonstrated below:

Output:

Omar Ωr Santos (@santosomar) 7

Red Team Village: WebSploits Labs by Omar Santos

What Ports are Used by Each Web Application?
Perform a quick nmap scan against the 10.6.6.0/24 subnet to find out the open ports at each target
container, as demonstrated below:

Omar Ωr Santos (@santosomar) 8

Red Team Village: WebSploits Labs by Omar Santos

Exercise 1: Web Application Reconnaissance
Reconnaissance is one of the most important steps in hacking. Let’s start by learning about fuzzing
web applications.

Fuzzing is a way of finding bugs using automation. It involves providing a wide range of invalid and
unexpected data into an application then monitoring the application for exceptions. The invalid data
used to fuzz an application could be crafted for a specific purpose, or randomly generated. The goal
is to induce unexpected behavior of an application (like crashes and memory leaks) and see if it leads
to an exploitable bug. In general, fuzzing is particularly useful for exposing bugs like memory leaks,
control flow issues, and race conditions.

There are many different kinds of fuzzing, each optimized for testing a specific type of application.
Web application fuzzing is the field of fuzzing web applications to expose common web vulnerabilities,
like injection issues, XSS, and more.

Fuzzers include three categories: mutation-based, generation-based and evolutionary.

There are “fuzzers” that allow you to discover files and directories in web applications. Examples of
these fuzzers include:

● dirbuster
● gobuster
● ffuf
● feroxbuster

The following applications also offer automated scanning and recon modules:
● OWASP ZAP (with automated scanning)
● nikto
● nuclei

Exercise 1a: Recon with gobuster
Gobuster is a tool used to brute-force:

● URIs (directories and files) in web sites.
● DNS subdomains (with wildcard support).
● Virtual Host names on target web servers.
● Open Amazon S3 buckets

Omar Ωr Santos (@santosomar) 9

https://github.com/OJ/gobuster

Red Team Village: WebSploits Labs by Omar Santos

Gobuster is written in Go and is a more modern alternative to Dirbuster.

Gobuster is installed in WebSploit Labs.

Discovery and recon tools like gobuster typically use wordlists (a list of words in a file that can be
used to find directories, files, and they are also often used to crack passwords and other operations).
In this case we will use wordlists for the purpose of enumerating files and directories.

You have hundreds of wordlists in WebSploit Labs (in addition to the dozens that come with Kali or
Parrot Security). For instance, in Kali or Parrot you can use the locate wordlists command to find
several wordlists that are included by different tools and resources, as demonstrated in the following
screenshot:

Omar Ωr Santos (@santosomar) 10

https://github.com/OJ/gobuster
https://tools.kali.org/web-applications/dirbuster

Red Team Village: WebSploits Labs by Omar Santos

WebSploit Labs include a clone of the SecList Github repository:
https://github.com/danielmiessler/SecLists
“SecLists is the security tester's companion. It's a collection of multiple types of lists used during
security assessments, collected in one place. List types include usernames, passwords, URLs,
sensitive data patterns, fuzzing payloads, web shells, and many more. The goal is to enable a
security tester to pull this repository onto a new testing box and have access to every type of list that
may be needed. This project is maintained by Daniel Miessler, Jason Haddix, and g0tmi1k.”

Omar Ωr Santos (@santosomar) 11

https://github.com/danielmiessler/SecLists
https://danielmiessler.com/
https://twitter.com/Jhaddix
https://blog.g0tmi1k.com/

Red Team Village: WebSploits Labs by Omar Santos

Use gobuster to find information about different web applications running in the Docker containers
included in WebSploit Labs, as demonstrated below:

Select any wordlist of your choosing. I am using a custom wordlist called mywords. You may want to
try the wordlists under /root/SecLists or the following directory: /usr/share/wordlists/dirbuster/

Omar Ωr Santos (@santosomar) 12

Red Team Village: WebSploits Labs by Omar Santos

Exercise 1b: Recon with ffuf
ffuf is another web application fuzzer and discovery tool. Use it as shown below to find directories and
files of the web applications running in WebSploit Labs:

Run ffuf to enumerate directories in any of the applications running in the containers (i.e., 10.6.6.23,
10.6.6.22, etc.)

Exercise 1c: Save the Results and Use the Replay-Proxy Option
The -o option allows you to send the output to a JSON file (omar-out.json in the example below). The
-replay-proxy is the cool option that allows you to send the paths of the directories found into Burp.
Why is this useful? Well, the free version of Burp does not come with an automated scanner, spider,
or fuzzer. This method, at least, allows you to send all the successful results right into Burp for further
analysis.

The following are the results in Burp:

Omar Ωr Santos (@santosomar) 13

https://github.com/ffuf/ffuf

Red Team Village: WebSploits Labs by Omar Santos

Exercise 2: Authentication and Session Management
Vulnerabilities
An attacker can bypass authentication in vulnerable systems via several methods. The following are
the most common ways that you can take advantage of authentication-based vulnerabilities in an
affected system:

● Credential brute forcing
● Session hijacking
● Redirect
● Default credentials
● Weak credentials
● Kerberos exploits
● Malpractices in OAuth/OAuth2, SAML, OpenID implementations

A large number of web applications keep track of information about each user for the duration of the
web transactions. Several web applications have the ability to establish variables like access rights and
localization settings and many others. These variables apply to each and every interaction a user has
with the web application for the duration of the session.

Omar Ωr Santos (@santosomar) 14

Red Team Village: WebSploits Labs by Omar Santos

Exercise 2a: Fingerprinting the Web Framework and Programming
Language used in the Backend

1. In this exercise you will try to determine what type of programming language and backend
infrastructure is used by looking at sessions IDs. However, first you need to configure your
browser to send traffic to the proxy (you can use Burp Suite or OWASP ZAP).

TIP: If you are using a recent version of Burp Suite, you can use the built-in browser and do
not worry about using the Firefox browser to send the traffic to Burp. To launch Burp's
browser, go to the Proxy > Intercept tab and click Open browser. You can then visit and
interact with websites just like you would with any other browser. All in-scope traffic is
automatically proxied through Burp. This means that as you browse your target website, you
can take advantage of Burp Suite's manual testing features. For example, you can intercept
and modify requests using Burp Proxy and study the complete HTTP history from the
corresponding tabs. You can then send these requests to other tools, such as Burp Repeater
and Burp Intruder, to perform additional testing of interesting items that you encounter.

2. If you want to use Firefox, navigate to Preferences:

Omar Ωr Santos (@santosomar) 15

https://portswigger.net/burp/documentation/desktop/tools/proxy
https://portswigger.net/burp/documentation/desktop/tools/repeater
https://portswigger.net/burp/documentation/desktop/tools/intruder

Red Team Village: WebSploits Labs by Omar Santos

3. Then navigate to Network Proxy > Settings.

4. Configure the proxy as shown below. Make sure that the “No proxy for” box does not have
any entry on it.

Omar Ωr Santos (@santosomar) 16

Red Team Village: WebSploits Labs by Omar Santos

5. Once you configure the proxy or use the Burp Suite built-in browser, navigate to the Damn
Vulnerable Web App (DVWA) http://10.6.6.13 The default username is “admin” and the
password is “password”.

ℹ️DVWA is a classic playground for people that are getting started with cybersecurity and
ethical hacking. It is a good starting point. Later we will play with tons of additional intentionally
vulnerable applications.

Omar Ωr Santos (@santosomar) 17

http://10.6.6.13

Red Team Village: WebSploits Labs by Omar Santos

6. Once you login to DVWA, you may need to Create/Reset the Database:

Omar Ωr Santos (@santosomar) 18

Red Team Village: WebSploits Labs by Omar Santos

7. Once you login to DVWA, launch Burp, navigate to Proxy > Intercept and turn on Intercept.

8. Go back to DVWA and navigate to Brute Force, while capturing the requests and responses.
Identify the session ID and write down the web framework and programming language used
by the application below:

Answer: ___________________________

ℹ️What I want you to learn here is how to use an interception proxy to capture the
transactions between your browser and the web application. When you are Hacking APIs you
may use applications like Postman (or similar) and intercept the transactions with your proxy.

Again… familiarize yourself with Burp, as we will be using it extensively throughout the
course. Click through each of the message editor tabs (Raw, Headers, etc.) to see the
different ways of analyzing the message.

9. Click the "Forward" button to send the request to the server. In most cases, your browser will
make more than one request in order to display the page (for images, etc.). Look at each
subsequent request and then forward it to the server. When there are no more requests to
forward, your browser should have finished loading the URL you requested.

10. You can go to the Proxy History tab. This contains a table of all HTTP messages that have
passed through the Proxy. Select an item in the table, and look at the HTTP messages in the
request and response tabs. If you select the item that you modified, you will see separate tabs
for the original and modified requests.

11. Click on a column header in the Proxy history. This sorts the contents of the table according to
that column. Click the same header again to reverse-sort on that column, and again to clear
the sorting and show items in the default order. Try this for different columns.

Omar Ωr Santos (@santosomar) 19

Red Team Village: WebSploits Labs by Omar Santos

12. Within the history table, click on a cell in the leftmost column, and choose a color from the
drop-down menu. This will highlight that row in the selected color. In another row, double-click
within the Comment column and type a comment. You can use highlights and comments to
annotate the history and identify interesting items.

Notes About the Burp CA Certificate

Since Burp breaks TLS/SSL connections between your browser and servers, your browser will by
default show a warning message if you visit an HTTPS site via Burp Proxy. This is because the
browser does not recognize Burp's SSL certificate, and infers that your traffic may be being
intercepted by a third-party attacker. To use Burp effectively with SSL connections, you really need to
install Burp's Certificate Authority master certificate in your browser, so that it trusts the certificates
generated by Burp.

A few additional details that are also documented at:
https://portswigger.net/burp/documentation/desktop/tools/proxy/using

When you have things set up, visit any URL in your browser, and go to the Intercept tab in Burp
Proxy. If everything is working, you should see an HTTP request displayed for you to view and modify.
You should also see entries appearing in the Proxy history tab. You will need to forward HTTP
messages as they appear in the Intercept tab, in order to continue browsing.

Intercepting requests and responses
The Intercept tab displays individual HTTP requests and responses that have been intercepted by
Burp Proxy for review and modification. This feature is a key part of Burp's user-driven workflow:

● Manually reviewing intercepted messages is often key to understanding the application's
attack surface in detail.

● Modifying request parameters often allows you to quickly identify common security
vulnerabilities.

Intercepted requests and responses are displayed in an HTTP message editor, which contains
numerous features designed to help you quickly analyze and manipulate the messages.
By default, Burp Proxy intercepts only request messages, and does not intercept requests for URLs
with common file extensions that are often not directly interesting when testing (images, CSS, and
static JavaScript). You can change this default behavior in the interception options. For example, you
can configure Burp to only intercept in-scope requests containing parameters, or to intercept all
responses containing HTML. Furthermore, you may often want to turn off Burp's interception
altogether, so that all HTTP messages are automatically forwarded without requiring user
intervention. You can do this using the master interception toggle, in the Intercept tab.

Omar Ωr Santos (@santosomar) 20

https://portswigger.net/burp/documentation/desktop/tools/proxy/options/installing-ca-certificate
https://portswigger.net/burp/documentation/desktop/tools/proxy/using
https://portswigger.net/burp/documentation/desktop/tools/proxy/intercept
https://portswigger.net/burp/documentation/desktop/tools/proxy/history
https://portswigger.net/burp/documentation/desktop/tools/proxy/intercept
https://portswigger.net/burp/documentation/desktop/functions/message-editor
https://portswigger.net/burp/documentation/desktop/tools/proxy/options#intercepting-http-requests-and-responses
https://portswigger.net/burp/documentation/desktop/tools/target/scope
https://portswigger.net/burp/documentation/desktop/tools/proxy/intercept

Red Team Village: WebSploits Labs by Omar Santos

Using the Proxy history
Burp maintains a full history of all requests and responses that have passed through the Proxy. This
enables you to review the browser-server conversation to understand how the application functions,
or carry out key testing tasks. Sometimes you may want to completely disable interception in the
Intercept tab, and freely browse a part of the application's functionality, before carefully reviewing the
resulting requests and responses in the Proxy history.
Burp provides the following functions to help you analyze the Proxy history:

● The history table can be sorted by clicking on any column header (clicking a header cycles
through ascending sort, descending sort, and unsorted). This lets you quickly group similar
items and identify any anomalous items.

● You can use the display filter to hide items with various characteristics.
● You can annotate items with highlights and comments, to describe their purpose or identify

interesting items to come back to later.
● You can open additional views of the history using the context menu, to apply different filters

or help test access controls.

Burp Proxy testing workflow
A key part of Burp's user-driven workflow is the ability to send interesting items between Burp tools to
carry out different tasks. For example, having observed an interesting request in the Proxy, you might:

● Quickly perform a vulnerability scan of just that request, using Burp Scanner.
● Send the request to Repeater to manually modify the request and reissue it over and over.
● Send the request to Intruder to perform various types of automated customized attacks.
● Send the request to Sequencer to analyze the quality of randomness in a token returned in the

response.
You can perform all these actions and various others using the context menus that appear in both the
Intercept tab and the Proxy history.

Omar Ωr Santos (@santosomar) 21

https://portswigger.net/burp/documentation/desktop/tools/proxy/history
https://portswigger.net/burp/documentation/desktop/tools/proxy/intercept
https://portswigger.net/burp/documentation/desktop/tools/proxy/history#history-table
https://portswigger.net/burp/documentation/desktop/tools/proxy/history#proxy-history-display-filter
https://portswigger.net/burp/documentation/desktop/tools/proxy/history#proxy-history-annotations
https://portswigger.net/burp/documentation/desktop/tools/proxy/history#proxy-history-testing-workflow
https://portswigger.net/burp/documentation/desktop/penetration-testing
https://portswigger.net/burp/documentation/desktop/scanning#launching-scans
https://portswigger.net/burp/documentation/desktop/tools/repeater/using
https://portswigger.net/burp/documentation/desktop/tools/intruder/using
https://portswigger.net/burp/documentation/desktop/tools/sequencer
https://portswigger.net/burp/documentation/desktop/tools/proxy/intercept
https://portswigger.net/burp/documentation/desktop/tools/proxy/history

Red Team Village: WebSploits Labs by Omar Santos

Exercise 2b: Brute Forcing the Application
1. In this exercise you will try to bruteforce the admin password. This is a very simple example

and should not take you more than 2-3 minutes. Brute force attacks are very easily mitigated
in most modern environments. So, I don’t want you to just learn how to do a brute force attack,
instead take advantage of this exercise to learn about the methodology and features in Burp
Suite (or similar proxies like the OWASP ZAP) to perform fuzzing, using wordlists, manipulate
different fields, etc…

2. Set the DVWA Security Level to low, as shown below:

3. Navigate to DVWA and Brute Force again and type admin and any password.

Omar Ωr Santos (@santosomar) 22

Red Team Village: WebSploits Labs by Omar Santos

4. Go back to Burp and right click on the Intercept window and select “Send to Intruder”.

Omar Ωr Santos (@santosomar) 23

Red Team Village: WebSploits Labs by Omar Santos

5. Navigate to Intruder > Positions and click on the Clear button.

Omar Ωr Santos (@santosomar) 24

Red Team Village: WebSploits Labs by Omar Santos

6. We can brute force any elements, but for this simple example we will just brute force the
password.

7. Navigate to Payloads. Due to the lack of time of this “intense” introduction class, we will just
use a simple list and cheat a little. In the real world, you can use wordlists.

Omar Ωr Santos (@santosomar) 25

Red Team Village: WebSploits Labs by Omar Santos

Note: You can only use wordlists in the Pro version of Burp; however, you can use the
OWASP Zed Attack Proxy (ZAP) to also perform this task. As described by OWASP, the
OWASP Zed Attack Proxy (ZAP) “is one of the world’s most popular free security tools and is
actively maintained by hundreds of international volunteers.” Many offensive and defensive
security engineers around the world use ZAP, which not only provides web vulnerability
scanning capabilities but also can be used as a sophisticated web proxy. ZAP comes with an
API and also can be used as a fuzzer. You can download and obtain more information about
OWASP’s ZAP from https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project.
You will see other examples using ZAP later in the course.

8. Navigate to the Options tab and go under Grep Match. The “Grep - Match” option can be
used to flag result items containing specified expressions in the response. For each item
configured in the list, Burp will add a new results column containing a checkbox indicating
whether the item was found in each response. You can then sort on this column (by clicking
the column header) to group the matched results together. Using this option can be very
powerful in helping to analyze large sets of results, and quickly identifying interesting items. In
password guessing attacks, scanning for phrases such as "password incorrect" or "login
successful" can locate successful logins; in testing for SQL injection vulnerabilities, scanning
for messages containing "ODBC", "error", etc. can identify vulnerable parameters. In our
example, let’s add the word “Welcome”, as shown below.

Omar Ωr Santos (@santosomar) 26

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

Red Team Village: WebSploits Labs by Omar Santos

7. Click “Start attack”. The window below will be shown -- and once the attack is successful, you will
see the “Welcome message” in the HTML, as shown below. You can even click on the Render tab to
show the page as if it was seen in a web browser.

Omar Ωr Santos (@santosomar) 27

Red Team Village: WebSploits Labs by Omar Santos

Exercise 2c: Bypassing Authorization
In this exercise we will use the OWASP Juice Shop (running on 10.6.6.12 and port 3000) and
Burp Suite. The OWASP Juice Shop is an intentionally insecure web application written
entirely in JavaScript which encompasses the entire OWASP Top Ten and other severe
security flaws.

1. In the OWASP Juice Shop, navigate to Account > Login .

2. Create a new user to be able to interact with the vulnerable application. Do not use your
personal email, any fake email is ok.

Omar Ωr Santos (@santosomar) 28

https://www.owasp.org/index.php/OWASP_Juice_Shop_Project

Red Team Village: WebSploits Labs by Omar Santos

3. Make a note of the password and username you used, since you will need it later.

Omar Ωr Santos (@santosomar) 29

Red Team Village: WebSploits Labs by Omar Santos

4. Login to the Juice Shop using those credentials.
5. Open Burp Suite in by navigating to Applications > Web Application Analysis > Burp, or by

just searching for “burp” as shown below:

6. Make sure that your browser’s proxy settings are configured correctly. Make sure that
Intercept is turned on (under the Proxy tab).

7. Add any item to your cart in the Juice Shop.

Omar Ωr Santos (@santosomar) 30

Red Team Village: WebSploits Labs by Omar Santos

8. You should be able to see the GET request in Burp. It looks like the application is using an API
(not only from the URI, but also you can see the Authorization Bearer token). The Basket ID
(the number 6) is predictable! This is a bad implementation!

9. You should be able to change the ID from 6 to another number. In this example, I changed it to
number 1.

10. Click Forward in Burp.
11. You should now see someone else’s cart and the success message below should be shown

(after you forward all packets to the web application / Juice Shop).

Note: There are several other authentication and session based attacks that you can perform with the
Juice Shop. Navigate to the scoreboard that you found earlier to obtain more information about other
flags / attacks that you can perform on your own.

Omar Ωr Santos (@santosomar) 31

Red Team Village: WebSploits Labs by Omar Santos

Exercise 2d: Discover the Score-Board
Juice-shop contains a score-board that allows you to keep track of your progress and lists all the
challenges within this intentionally vulnerable application.
You can simply guess what is the URL of the score-board or try to find references to it by using the
development tools in Firefox.

A good place to start is by inspecting the Javascript files, as shown below:

The file main-es2015.js looks interesting… If you open the file and search for “score”, you should be
able to find the entry shown in the next screenshot.

Omar Ωr Santos (@santosomar) 32

Red Team Village: WebSploits Labs by Omar Santos

Yes! The score-board path is score-board (I even have been telling you here from the start of this
exercise ;-)).

Omar Ωr Santos (@santosomar) 33

Red Team Village: WebSploits Labs by Omar Santos

Exercise 3: Reflected XSS
Cross-site scripting (XSS) vulnerabilities, which have become some of the most common web
application vulnerabilities, are achieved using the following attack types:

● Reflected XSS
● Stored (persistent) XSS
● DOM-based XSS (this is a type of reflected XSS)

Successful exploitation could result in installation or execution of malicious code, account
compromise, session cookie hijacking, revelation or modification of local files, or site redirection.

Note: The results of XSS attacks are the same regardless of the vector.

You typically find XSS vulnerabilities in the following:

● Search fields that echo a search string back to the user
● HTTP headers
● Input fields that echo user data
● Error messages that return user-supplied text
● Hidden fields that may include user input data
● Applications (or websites) that display user-supplied data

The following example shows an XSS test that can be performed from a browser’s address bar:

javascript:alert("Omar_s_XSS test");

javascript:alert(document.cookie);

The following example shows an XSS test that can be performed in a user input field in a web form:

Click here to view code image

<script>alert("XSS Test")</script>

Attackers can use obfuscation techniques in XSS attacks by encoding tags or malicious portions of
the script using Unicode so that the link or HTML content is disguised to the end user browsing the
site.

Omar Ωr Santos (@santosomar) 34

Red Team Village: WebSploits Labs by Omar Santos

Exercise 3a: Evasions
What type of vulnerabilities can be triggered by using the following string?

<img src=javascri&#

x70t:alert('XSS')>

Answer:___________________________

TIP: Look at all the examples of evasion techniques at my GitHub repository at:
https://github.com/The-Art-of-Hacking/h4cker/blob/master/web_application_testing/xss_vectors.md
Remember that there is a copy/clone of my GitHub repo in WebSploit under /root/h4cker

Exercise 3b: Reflected XSS
1. Launch the WebGoat application (http://10.6.6.11:8080/WebGoat). WebGoat is a very cool

OWASP project! It not only allows you to play with different vulnerable scenarios, but it
explains the underlying flaws in detail.

2. Create a user in the application (any username and password). The purpose of this user is so
that you can track your progress in the WebGoat application:

Omar Ωr Santos (@santosomar) 35

https://github.com/The-Art-of-Hacking/h4cker/blob/master/web_application_testing/xss_vectors.md
http://10.6.6.11:8080/WebGoat

Red Team Village: WebSploits Labs by Omar Santos

3. Navigate to (A7) Cross-site-Scripting and walk through steps 1 through 7.

Omar Ωr Santos (@santosomar) 36

Red Team Village: WebSploits Labs by Omar Santos

4. In step 7, identify which field is susceptible to XSS. Use the following payload to steal the
user’s session cookie <script>alert(document.cookie);</script>

5. Were you able to get the user’s session cookie?

Exercise 3c: DOM-based XSS
1. Review the OWASP DOM-based XSS writeup at:

https://owasp.org/www-community/attacks/DOM_Based_XSS
2. Login to the Juice-Shop application (http://10.6.6.12:3000)
3. Find a DOM-based XSS in the Juice Shop application/site. You only need your browser for

this attack. Find out how the Juice Shop is susceptible to DOM-based XSS.

You can use the following string:

<iframe src=”javascript:alert(‘xss’)”>

Omar Ωr Santos (@santosomar) 37

https://owasp.org/www-community/attacks/DOM_Based_XSS
http://10.6.6.12:3000

Red Team Village: WebSploits Labs by Omar Santos

Exercise 4: Stored (persistent) XSS
1. Go to the DVWA in your browser and make sure that the DVWA Security is set to low.
2. Navigate to the XSS (Stored) tab. There you can access a guestbook. Notice how the page

echoes the user input in the guestbook.

3. Test for XSS, as shown below:

Omar Ωr Santos (@santosomar) 38

Red Team Village: WebSploits Labs by Omar Santos

4. You should get a popup message, as shown below:

5. Notice how the message will reappear after you navigate outside of that page and come back
to the same guest book. That is the main difference between a stored (persistent) XSS and a
reflected XSS.

Note: These XSS exercises should not take you more than 2 minutes each. If you are done early,
familiarize yourself with other ways on how to perform XSS testing at: http://h4cker.org/go/xss

Omar Ωr Santos (@santosomar) 39

https://www.owasp.org/index.php/Testing_for_Reflected_Cross_site_scripting_(OTG-INPVAL-001)

Red Team Village: WebSploits Labs by Omar Santos

Exercise 4b: Let’s spice things up a bit!
Perform a persistent XSS attack with <script>alert("XSS2")</script> bypassing a client-side

security mechanism."

Add a new user with a POST to /api/Users and alter the transaction sending the following

{"email": "<script>alert(\"XSS\")</script>", "password":""}

...as a JSON object. You will need to use Burp or the OWASP Zed Attack Proxy for this scenario.
I am demonstrating the attack using Burp below.

Omar Ωr Santos (@santosomar) 40

Red Team Village: WebSploits Labs by Omar Santos

Well, Omar really sucks, since he just gave you the incorrect syntax to get credit in Juice-shop ;-). In
the real world, you can put anything you want in the “alert”. However, in this case Juice-shop is
looking for “XSS” specifically.

Omar Ωr Santos (@santosomar) 41

Red Team Village: WebSploits Labs by Omar Santos

After sending this to the web application (Juice-shop), it will give you credit, as shown below.

There are thousands of ways that you can obfuscate your attacks to bypass many security
mechanisms, web application firewalls (WAFs), and protections provided by different frameworks. I
have hundreds of examples at the GitHub repository that can be accessed at:
https://h4cker.org/github

The following is another example where you can bypass some of these security protections. In

Juice-shop a legacy library (sanitize-html 1.4.2) is used on the server that is responsible for sanitizing.

The version used is vulnerable to masking attacks because no recursive sanitizing takes place. Find a

place where you can obfuscate your XSS attack and bypass that protection:

Omar Ωr Santos (@santosomar) 42

https://h4cker.org/github

Red Team Village: WebSploits Labs by Omar Santos

<<script>alert("XSS")</script>script>alert("XSS")<</script>/script>

The “Contact Us” form is vulnerable!

Omar Ωr Santos (@santosomar) 43

Red Team Village: WebSploits Labs by Omar Santos

Exercise 5: Exploiting XXE Vulnerabilities
An XML External Entity attack is a type of attack against an application that parses XML input.

● This attack occurs when XML input containing a reference to an external entity is
processed by a weakly configured XML parser.

● This attack may lead to the disclosure of confidential data, denial of service, server
side request forgery, port scanning from the perspective of the machine where the
parser is located, and other system impacts. Attacks can include disclosing local files,
which may contain sensitive data such as passwords or private user data, using file:
schemes or relative paths in the system identifier.

● Since the attack occurs relative to the application processing the XML document, an
attacker may use this trusted application to pivot to other internal systems, possibly
disclosing other internal content via http(s) requests or launching a CSRF attack to any
unprotected internal services.

● In some situations, an XML processor library that is vulnerable to client-side memory
corruption issues may be exploited by dereferencing a malicious URI, possibly allowing
arbitrary code execution under the application account.

● Other attacks can access local resources that may not stop returning data, possibly
impacting application availability if too many threads or processes are not released.

1. Access WebGoat using your browser (http://10.6.6.11:8080/WebGoat).

2. Login with the user you created earlier.

3. Navigate to (A4) XML External Entities (XXE) > XXE.

Omar Ωr Santos (@santosomar) 44

http://127.0.0.1:6661/WebGoat

Red Team Village: WebSploits Labs by Omar Santos

4.

5. Feel free to read the explanation of XXE (which I copied and pasted above) from WebGoat.

6. Then navigate to the WebGoat Step 4, as shown in the following figure.

Omar Ωr Santos (@santosomar) 45

Red Team Village: WebSploits Labs by Omar Santos

7. Launch Burp and make sure that Intercept is on. Make sure that your browser proxy settings
are set correctly.

Omar Ωr Santos (@santosomar) 46

Red Team Village: WebSploits Labs by Omar Santos

8. Go back to WebGoat and enter a comment in the web form (any text) and click Submit.

9. Go back to Burp and you will see the HTTP POST message shown below:

10. Let’s modify that message and type our own XML “code”.

Omar Ωr Santos (@santosomar) 47

Red Team Village: WebSploits Labs by Omar Santos

11. Forward the POST to the web server. This should cause the application to show a list of files
after the comment “OMAR_WAS_HERE”, as shown below (of course, use whatever text you
want in your own example):

12. Now, on your own, try to list the contents of the /etc/passwd file using a similar approach.

13. Try to access the contents of the /etc/shadow file. Were you successful? If not, why?

Exercise 6: SQL Injection
SQL injection (SQLi) vulnerabilities can be catastrophic because they can allow an attacker to view,
insert, delete, or modify records in a database. In an SQL injection attack, the attacker inserts, or
injects, partial or complete SQL queries via the web application. The attacker injects SQL commands
into input fields in an application or a URL in order to execute predefined SQL commands.

A Brief Introduction to SQL
As you may know, the following are some of the most common SQL statements (commands):

● SELECT: Used to obtain data from a database
● UPDATE: Used to update data in a database
● DELETE: Used to delete data from a database
● INSERT INTO: Used to insert new data into a database
● CREATE DATABASE: Used to create a new database
● ALTER DATABASE: Used to modify a database
● CREATE TABLE: Used to create a new table
● ALTER TABLE: Used to modify a table
● DROP TABLE: Used to delete a table

Omar Ωr Santos (@santosomar) 48

https://learning.oreilly.com/library/view/comptia-pentest-cert/9780135225523/gloss01.xhtml#gloss01_93

Red Team Village: WebSploits Labs by Omar Santos

● CREATE INDEX: Used to create an index or a search key element
● DROP INDEX: Used to delete an index

Typically, SQL statements and divided into the following categories:
● Data definition language (DDL) statements
● Data manipulation language (DML) statements
● Transaction control statements
● Session control statements
● System control statements
● Embedded SQL statements

Exercise 6a: A Simple Example of SQL Injection
1. Navigate to WebGoat For instance, https://10.6.6.11:8080/WebGoat.

2. Navigate to (A1) Injection > SQL Injection (intro).

Read through the explanations of SQL injection and complete the first 8 exercises on your own (these
are just an introduction to SQL and SQL statements). Then navigate to exercise 9. You are given a
few hints about a database table called user_data. WebGoat guides you through this exercise.

One of the first steps when finding SQL injection vulnerabilities is to understand when the application
interacts with a database. This is typically done with web authentication forms, search engines, and
interactive sites such as e-commerce sites.

Omar Ωr Santos (@santosomar) 49

Red Team Village: WebSploits Labs by Omar Santos

You can make a list of all input fields whose values could be used in crafting a valid SQL query. This
includes trying to identify and manipulate hidden fields of POST requests and then testing them
separately, trying to interfere with the query and to generate an error. As part of penetration testing,
you should pay attention to HTTP headers and cookies.

As a penetration tester, you can start by adding a single quote (‘) or a semicolon (;) to the field or
parameter in a web form. The single quote is used in SQL as a string terminator. If the application
does not filter it correctly, you may be able to retrieve records or additional information that can help
enhance your query or statement.
You can also use comment delimiters (such as -- or /* */), as well as other SQL keywords, including
AND and OR operands. Another simple test is to insert a string where a number is expected.

SQL injection attacks can be divided into the following categories:
● In-band SQL injection: With this type of injection, the attacker obtains the data by using the

same channel that is used to inject the SQL code. This is the most basic form of an SQL
injection attack, where the data is dumped directly in a web application (or web page).

● Out-of-band SQL injection: With this type of injection, the attacker retrieves data using a
different channel. For example, an email, a text, or an instant message could be sent to the
attacker with the results of the query; or the attacker might be able to send the compromised
data to another system.

● Blind (or inferential) SQL injection: With this type of injection, the attacker does not make the
application display or transfer any data; rather, the attacker is able to reconstruct the

Omar Ωr Santos (@santosomar) 50

Red Team Village: WebSploits Labs by Omar Santos

information by sending specific statements and discerning the behavior of the application and
database.

TIP: To perform an SQL injection attack, an attacker must craft a syntactically correct SQL statement
(query). The attacker may also take advantage of error messages coming back from the application
and might be able to reconstruct the logic of the original query to understand how to execute the
attack correctly. If the application hides the error details, the attacker might need to reverse engineer
the logic of the original query.
There are essentially five techniques that can be used to exploit SQL injection vulnerabilities:

● Union operator: This is typically used when a SQL injection vulnerability allows a SELECT
statement to combine two queries into a single result or a set of results.

● Boolean: This is used to verify whether certain conditions are true or false.
● Error-based technique: This is used to force the database to generate an error in order to

enhance and refine an attack (injection).
● Out-of-band technique: This is typically used to obtain records from the database by using a

different channel. For example, it is possible to make an HTTP connection to send the results
to a different web server or a local machine running a web service.

● Time delay: It is possible to use database commands to delay answers. An attacker may use
this technique when he or she doesn’t get any output or error messages from the application.

It is possible to combine any of the techniques mentioned above to exploit an SQL injection
vulnerability. For example, an attacker may use the union operator and out-of-band techniques.
SQL injection can also be exploited by manipulating a URL query string, as demonstrated here:

https://store.h4cker.org/buystuff.php?id=99 AND 1=2

This vulnerable application then performs the following SQL query:

SELECT * FROM products WHERE product_id=99 AND 1=2

The attacker may then see a message specifying that there is no content available or a blank page.
The attacker can then send a valid query to see if there are any results coming back from the
application, as shown here:

https://store.h4cker.org/buystuff.php?id=99 AND 1=1

Some web application frameworks allow multiple queries at once. An attacker can take advantage of
that capability to perform additional exploits, such as adding records. The following statement, for
example, adds a new user called omar to the users table of the database:

https://store.h4cker.org/buystuff.php?id=99; INSERT INTO

users(username) VALUES ('omar')

Omar Ωr Santos (@santosomar) 51

Red Team Village: WebSploits Labs by Omar Santos

Exercise 6b: SQL Injection Level 2 - GDPR Data Erasure Issue
Go back to Juice-shop (remember, running on port 8882).

There was a user (called Chris) that was erased from the system, because he insisted on his "right to
be forgotten" in accordance with Art. 17 GDPR. Let’s see if we can login as that user. Yes, really.
What if we apply SQL injection to do this? Since we do not know what is Chris’ email, we can try to
trick the application by using the deletedAt SQL operation, as shown below:

Omar Ωr Santos (@santosomar) 52

Red Team Village: WebSploits Labs by Omar Santos

Exercise 6c: SQL Injection using SQLmap
SQLmap is a great tool that allows you to automate SQL injection attacks. Let’s take a look at an
example of how powerful this tool is.

1. Navigate back to DVWA and go to SQL Injection.
2. Enter any text in the User ID field (in my case, I just entered my name “omar”). You want to

intercept the transaction between your web browser and the application.

3. Once Burp intercepts the GET request, highlight the output, right click, and select “Copy to
file”. Save the contents to any file.

Omar Ωr Santos (@santosomar) 53

http://sqlmap.org/

Red Team Village: WebSploits Labs by Omar Santos

4. Open the terminal and enter the following command to try to enumerate the type of database
and the database name. In my case, I saved the contents of the HTTP GET request to
/home/omar/omar-get-request.txt. Point yours to whatever file you created.

5. Accept all defaults.

Omar Ωr Santos (@santosomar) 54

Red Team Village: WebSploits Labs by Omar Santos

6. We found the DVWA database (dvwa). Please pay attention to all the payloads that the tool is
using.

7. Now that we know the database name, let’s try to dump all the information from the database.
To do so, use the following command:

Omar Ωr Santos (@santosomar) 55

Red Team Village: WebSploits Labs by Omar Santos

8. It looks like SQLmap was able to find a database table called
“guestbook”. It also was able to find a database table that contains usernames and
passwords. The tool allows you to store password hashes so that you can crack them with
other tools.

9. SQLmap can also do some basic dictionary-based attacks.

10. SQLmap was able to crack the passwords and dump the contents of the user table.

Omar Ωr Santos (@santosomar) 56

Red Team Village: WebSploits Labs by Omar Santos

Exercise 7: Exploiting Weak Cryptographic
Implementations
This exercise is for informational purposes only. If your machine does not have access to the Internet.
However, you can do this against any other systems you may have in your own lab.

1. You can use nmap to enumerate weak ciphers, as shown below:

nmap --script ssl-cert,ssl-enum-ciphers -p 443 theartofhacking.org

2. There are many other open source and commercial tools that can be used to find weak
ciphers and cryptographic implementations. However, a very useful open source tool is
testssl.sh (http://testssl.sh).

Omar Ωr Santos (@santosomar) 57

http://testssl.sh

Red Team Village: WebSploits Labs by Omar Santos

3. You can download this tool and run it against any web server running HTTPS, as
demonstrated below.

root@kali:~# ./testssl.sh theartofhacking.org

No engine or GOST support via engine with your /usr/bin/openssl

###

testssl.sh 2.9.5-6 from https://testssl.sh/

This program is free software. Distribution and

modification under GPLv2 permitted.

USAGE w/o ANY WARRANTY. USE IT AT YOUR OWN RISK!

Please file bugs @ https://testssl.sh/bugs/

###

Using "OpenSSL 1.1.0h 27 Mar 2018" [~143 ciphers]

on kali:/usr/bin/openssl

(built: "reproducible build, date unspecified", platform: "debian-amd64")

Testing all IPv4 addresses (port 443): 104.27.176.154 104.27.177.154

--

Start 2018-07-28 23:18:27 -->> 104.27.176.154:443 (theartofhacking.org)

<<--

further IP addresses: 104.27.177.154 2400:cb00:2048:1::681b:b09a

2400:cb00:2048:1::681b:b19a

rDNS (104.27.176.154): --

Service detected: HTTP

Testing protocols via sockets except SPDY+HTTP2

SSLv2 not offered (OK)

SSLv3 not offered (OK)

TLS 1 not offered

TLS 1.1 not offered

TLS 1.2 not offered

SPDY/NPN h2, http/1.1 (advertised)

HTTP2/ALPN h2, http/1.1 (offered)

Testing ~standard cipher categories

NULL ciphers (no encryption) not offered (OK)

Anonymous NULL Ciphers (no authentication) not offered (OK)

Export ciphers (w/o ADH+NULL) not offered (OK)

LOW: 64 Bit + DES encryption (w/o export) not offered (OK)

Omar Ωr Santos (@santosomar) 58

Red Team Village: WebSploits Labs by Omar Santos

Weak 128 Bit ciphers (SEED, IDEA, RC[2,4]) not offered (OK)

Triple DES Ciphers (Medium) not offered (OK)

High encryption (AES+Camellia, no AEAD) offered (OK)

Strong encryption (AEAD ciphers) offered (OK)

Testing robust (perfect) forward secrecy, (P)FS -- omitting Null

Authentication/Encryption, 3DES, RC4

Cipher mapping not available, doing a fallback to openssl

PFS is offered (OK)

Testing server preferences

Has server cipher order? yes (OK)

Negotiated protocol TLSv1.2

Negotiated cipher ECDHE-ECDSA-CHACHA20-POLY1305, 253 bit ECDH

(X25519)

Cipher order

SSLv3: Local problem: /usr/bin/openssl doesn't support "s_client -ssl3"

TLSv1.2: ECDHE-ECDSA-CHACHA20-POLY1305 ECDHE-ECDSA-AES128-GCM-SHA256

ECDHE-ECDSA-AES128-SHA ECDHE-ECDSA-AES128-SHA256

ECDHE-ECDSA-AES256-GCM-SHA384 ECDHE-ECDSA-AES256-SHA

ECDHE-ECDSA-AES256-SHA384

Testing server defaults (Server Hello)

TLS extensions (standard) "renegotiation info/#65281" "extended master

secret/#23" "session ticket/#35" "status request/#5"

"next protocol/#13172" "EC point formats/#11"

"application layer protocol negotiation/#16"

Session Ticket RFC 5077 hint 64800 seconds, session tickets keys seems to be

rotated < daily

SSL Session ID support yes

Session Resumption Tickets: yes, ID: yes

<output omitted for brevity>

Omar Ωr Santos (@santosomar) 59

Red Team Village: WebSploits Labs by Omar Santos

Exercise 8: Path (Directory) Traversal
1. Go to the Damn Vulnerable Web Application (DVWA) in WebSploit and navigate to File

Inclusion.

2. Select any of the PHP file links.

3. Attempt to get the contents of the /etc/passwd file by manipulating the URL, as demonstrated
below:

You should see the contents of the /etc/passwd file, as shown in the example in the next page.

Omar Ωr Santos (@santosomar) 60

Red Team Village: WebSploits Labs by Omar Santos

That was too easy… The next exercise (our final exercise) will not be this easy…

Omar Ωr Santos (@santosomar) 61

Red Team Village: WebSploits Labs by Omar Santos

Exercise 9: Command Injection

1. NodeGoat is another awesome OWASP Project (https://github.com/OWASP/NodeGoat)
2. You should have a script called nodegoat.sh under the /root directory. If you have an older

version of WebSploit Labs, you can download the nodegoat.sh script using wget, as shown
below:

wget https://websploit.org/nodegoat.sh

3. Launch NodeGoat in WebSploit Labs using the /root/nodegoat.sh script.

4. Make sure that you are either executing it as root (i.e., sudo -i) or execute the script with the
sudo bash /root/nodegoat.sh command. Of course, you probably already knew that 🤪

5. Create a new user and login to the application.

Omar Ωr Santos (@santosomar) 62

https://github.com/OWASP/NodeGoat

Red Team Village: WebSploits Labs by Omar Santos

6. Once you create the user and log in, the following Dashboard is shown:

7. Navigate to Contributions. An attacker might be able to read the contents of files from the
vulnerable application by leveraging command injection vulnerabilities. You can use the
following two commands list the contents of the current directory and parent directory
respectively:

res.end(require('fs').readdirSync('.').toString())

res.end(require('fs').readdirSync('..').toString())

Omar Ωr Santos (@santosomar) 63

Red Team Village: WebSploits Labs by Omar Santos

8. Enter those commands/payloads, as demonstrated below:

9. Click Submit.
10. The following screen with all the underlying files are shown.

11. Once file names are obtained, an attacker can issue the command below to view the actual
contents of a file:

res.end(require('fs').readFileSync(filename))

Omar Ωr Santos (@santosomar) 64

Red Team Village: WebSploits Labs by Omar Santos

12. In the following example, we are retrieving the file server.js

13. An attacker can further exploit this vulnerability by writing and executing harmful binary files
using fs and child_process modules.

Omar Ωr Santos (@santosomar) 65

Red Team Village: WebSploits Labs by Omar Santos

Exercise 10: Bypassing Additional Web Application
Flaws
Navigate to the Juice Shop and try to solve the exercise of posting some feedback in another user's
name.

● You already know how to use proxies like BurpSuite and the OWASP ZAP.
● Intercept client / server transactions to post feedback when logged on.
● The request contains the following information:

{

"UserId": 2,

"rating":2,

"comment":"1"

}

Try to manipulate the request.

The next exercise will be a little harder… ;-)

Exercise 11: Additional SQL Injection Exercises

Exercise 11.1: Logging in as Admin
Access the Juice Shop application. The application is vulnerable to injection attacks Data
entered by the user is integrated 1:1 in an SQL command that is otherwise constant.
Different statements can be amended/extended as appropriate. The Administrator is the first
to appear in the selection list and is therefore logged on.

To quickly test, you can use the following string in the Email field in the Login screen. You
can use anything for the password.

Omar Ωr Santos (@santosomar) 66

Red Team Village: WebSploits Labs by Omar Santos

Omar Ωr Santos (@santosomar) 67

Red Team Village: WebSploits Labs by Omar Santos

You
are now the administrator and you can see other fields in the system.

Exercise 11.2 Login as Bender

Omar Ωr Santos (@santosomar) 68

Red Team Village: WebSploits Labs by Omar Santos

Exercise 12: DC30_01 and DC30_02

You probably guessed it…
DC30_01 is the first CTF-like exercise that I released for DEF CON 30…. and…

Yes, DC30_02 is the second exercise.

You will NOT receive any hints or tips for these two exercises. You must find the vulnerabilities on
your own and compromise both applications. The following are the IP addresses for both
applications:

● DC30_01 = 10.6.6.24
● DC30_02 = 10.6.6.25

Omar Ωr Santos (@santosomar) 69

Red Team Village: WebSploits Labs by Omar Santos

Congratulations!

You have successfully completed the lab!

Of course, you can continue playing with all the vulnerable applications within WebSploit and others
that I have listed in the GitHub repository (https://becomingahacker.org/github), as there are dozens

of other “flags” / challenges / exercises...

Omar Ωr Santos (@santosomar) 70

https://websploit.h4cker.org/
https://h4cker.org/github

